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Abstract— Modern battlefields are subject to spoofing of
GPS signals. While large aircraft platforms can counter the
effects of GPS spoofing via redundant and dissimilar sensors,
the disadvantaged nodes with smaller platforms such as Air
Launched Effects (ALE), with more limited capabilities, can be
vulnerable. That said, other sensors on the platform may give
clues to the drone about where it is located. In this paper, we
investigate the ability of sensor fusion to remediate spoofing of
GPS signals for ALE platforms. We first conduct performance
comparison among several complementary techniques, including
the use of inertial measurement units (IMUs), communication
with nearby ALEs (to compare GPS readings), and received
signal strength from networking connections (to estimate distance
to neighboring ALEs, etc.) We then propose a novel architecture
that performs sensor fusion to intelligently combine observations
across multiple sensors so as to maximize the ability to detect GPS
spoofing as well as to reconstruct coordinates with confidence
levels. From a simulation study based on real-world mobility and
sensor traces, we find that our approach can improve location
estimates accuracy by multiple orders of magnitude as compared
to simple baseline techniques, supplementing the ability for ALEs
to navigate and execute missions in GPS-denied environments.

I. INTRODUCTION

Modern battlefields are highly contested environments with
an electronic and cyber threat that is continually advancing
in capability. Due to the advent of software-defined radio
capabilities as well as increasingly sophisticated hardware,
the ability to “jam” or spoof communications in advanced
forms is increasingly within reach of even moderately capable
enemies. Unfortunately, ability of modern warfighters to con-
duct missions is ever more intertwined with satellite-hosted
localization systems such as the Global Positioning System
(GPS) [1]. Such systems are crucial for planning, logistics
and routing of assets, as well as navigation capabilities for
autonomous platforms such as UAVs. While large aircraft
platforms may make use of technologies to counter the effects
of GPS spoofing via redundant and dissimilar radio stacks,
smaller platforms such as Air Launched Effects (ALEs), with
more limited capabilities, can be very vulnerable. Disrupting
location services for such platforms can incur dire effects, from
termination of missions to capture of classified technologies.

While these challenges harm the ability of the warfighter
to trust GPS, the architecture of ALEs may provide av-
enues towards a solution. In particular, ALEs often contain

a broad spectrum of sensors of various sorts, from cameras to
gyroscopes and LiDAR. Such sensors provide observational
capabilities that may provide clues as to the ALE’s location
during an attack. For example, an ALE may be able to use its
Inertial Measurement Unit (IMU) to estimate how far it has
turned and traveled since an attack began; or a camera may
be able to estimate altitude.

In our work, we investigate the question: is it possible
to combine data from low-accuracy non-positional sensors
of a drone to infer its position accurately in a GPS-denied
environment? To achieve this, we propose a novel frame-
work that integrates multiple sensor inputs, and derives the
ALE’s updated location. Our approach works by firstly de-
veloping analytical models that derive positional inferences
from individual sensor inputs. These inferences are then fed
into a learning pipeline, where data is intelligently cleaned,
smoothed, and then fused leveraging an Error-State Extended
Kalman-Filtering (ES-EKF) based approach. Our fusing ap-
proach comprises two stages, first combining sensors within a
single ALE, then by leveraging observations from neighboring
ALEs to further refine the result. The pipeline then outputs
the combined positional inference along with a confidence
value, which the warfighter (or software running on the ALE)
can use to estimate location, as well as to determine how
much they can trust their received GPS signal in contested
battlefield environment scenarios. To verify our approach,
we evaluate and cross-validate with both emulation (using
real-world GPS and IMU data) and simulation (using an
event-driven wireless simulation environment). Our results
show the ES-EKF based fusion algorithm with low accuracy
sensors inputs can achieve a substantially higher accuracy than
single sensor alone. Specifically, the sensor fusion method for
commercial grade RSSI receiver and IMU can achieve up
to a two order-of-magnitude increase in positioning accuracy
compared to dead reckoning with tactical grade IMU. Fusing
outputs across multiple disparate sensors also greatly reduces
variance in position uncertainty, and can leverage collaboration
between neighboring drones to further improve performance.

The rest of this paper is structured as follows. Section II
describes several works related to our undertakings. Section III
introduces our design, including architectural and analytic con-
tributions. We then present our evaluation results in Section IV



and conclude in Section V.

II. RELATED WORK

Localization involves determining the location of a device
or object in a given environment. Numerous approaches have
been proposed to address this challenge. GPS [1] is widely
used for outdoor localization. Current NAVSTAR GPS re-
ceivers receive signals from satellites and use triangulation
to calculate the device’s position. GPS suffers from lim-
ited accuracy from GPS-denied technologies and atmospheric
conditions. Another widely used technology is range-based
localization, including time of arrival (ToA), time difference
of arrival (TDoA), angle of arrival (AoA), or received signal
strength indicator (RSSI). E-911 [2] is a system used to locate
a phone during emergency calls. It determines the phone’s
location by intersecting the lines formed by AoA from each
cell tower. SLAM creates a real-time map using visual sensors
such as camera or non-visual sensor such as LiDAR and track
the position or movement of the device. Work from Alonso et
al [3] demonstrates that visual SLAM updates the device’s
position and orientation on a digital map for localization
purpose. However, large-scale environments, motion distor-
tion, and computing resource requirement restricts the scenario
where visual SLAM can be used [4]. Non-visual SLAM can
also generate maps for localization purposes. Tam et al. [5]
use LiDAR to get 3D pointclouds registration and combine it
with an offline map for localization. However, environmental
effects and costs associated with advanced sensors impose
restrictions on its practical usage. There has also been prior
work on using individual sensors to estimate location of an
asset. Angelino et al. [6] utilizes IMUs to gather information
on the UAV’s attitude changes, but does not attempt to handle
the issue of error amplification over time. Some works [7] use
visual-based sensors for height estimation but face challenges
in scenarios with occlusions in the field of view. Received
Signal Strength Indicator (RSSI) may also be used to estimate
distance between a single pair of nodes, but such approaches
face challenges in environments which subject to interference
and suffer from varying accuracy over different ranges. Zhang
et al’s work [8] leverages LiDAR and UWB and Marquez’s
work [9] fuses UWB and IMU for an indoor scenario over
sensors co-located within a small and controlled area. In our
work, we explore the ability of sensor fusion technologies
to overcome shortcomings of individual sensor inferences, as
well as to explore the tradeoffs of using different sensors
in varied environments. We leverage these insights to build
a multi-sensor framework to protect ALEs from GPS-based
spoofing and jamming attacks that may arise in battlefield
scenarios.

III. SYSTEM DESIGN

The goal of our system is to provide a way to efficiently
combine and leverage non-positional sensor outputs to form
intuition on the drone’s current location and heading. Then,
by comparing between the estimated location of the drone
and its associated confidence level with the corresponding
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Fig. 1. Overview of system architecture.

GPS coordinate, it becomes possible to ascertain spoofed GPS
signal. To do this, we need some way to translate from varying
kinds of sensors into positional data, as well as some way
to combine those various inferences together into a single
inference on position.

To do this, we propose a location inference system, as
shown in Figure 1. There are two key algorithmic steps
that underlie our approach, which are described as follows.
First, we need some way to convert sensor data into location
information. To do this, our design leverages the concept of a
positional inference driver (PID). Each sensor is equipped with
a PID; these PIDs acquire outputs from individual sensors and
reconstruct position information. PIDs differ for each sensor
type, as the manner in which we infer location information
from a camera is likely to be different from the way we infer
from an IMU. PIDs are run independently for each sensor, as
each PID maintains state (which it leverages to improve its
inferences) which is specific to that specific sensor. Each PID
acquires data at a certain frequency (determined by the sensor
type and measurement constraints). Each PID then performs a
pre-filtering stage, to clean the data, downsampling to remove
biases, as well as smoothing noise to improve signal. The
use of PIDs enables a modular architecture; different ALE
platforms may have different sensor types, PIDs allow us to
interface with the sensors that are available in a modular and
extensible fashion.

Second, once location information is inferred from each of
the sensors, we need to decide which sensors to actually listen
to. To do this, we leverage sensor fusion, to combine perceived
location information in an effective manner. In practice, we
may want to listen to some sensors more than others (e.g.,
IMU inferences may become less accurate over time due
to accumulated error, but may be very accurate soon after
GPS signal loss). To achieve this, we adapt the Error State
Extended Kalman Filter (ES-EKF) [10] [11]. Our Kalman
Filter-based model takes data from multiple individual sensors,
then compares the data from each sensor to compensate the
measurement noise from each individual sensor. If desired,
sensor inputs received from other drones may be fused as
well in this step. The fusion model then outputs the estimated
location of the drone with a covariance matrix representing
the confidence level of the estimation. Our fusion model
provides the capability to incorporate human guidance through
the acceptance of weights, as humans may have domain or
scenario-specific information (e.g., if the drone is entering
a space of known signal interference, it may be desired to
reduce reliance on RSSI measurements in advance of entering



the area). System applications running on the drone can then
use these measurements to both determine location as well
as estimate confidence in location measurements over time as
they perform their missions.

A. Positional Inference Drivers

To construct a positional inference driver, we need a way
to translate location “hints” collected from the sensor into a
continuous stream of inferred locations. The manner in which
this is done depends on the sensor type. For example:

1) An IMU outputs the angular speed and acceleration
on three axes, which allows us to interpolate location
information of the drone after proper integration opera-
tions [6]. A unique advantage of IMU is its robustness,
as an intrinsic sensor, IMU does not rely on extrinsic
information from its surroundings which make it difficult
to be jammed or spoofed.

2) A camera provides a sequence of digital images, where
we can use visual odometry [4] [7] [12] to estimate the
displacement between frames and hence infer the posi-
tion and attitude changes (image features are extracted
and tracked across continuous images).

3) LiDAR, consisting of multiple laser transmitters and
receivers, can precisely estimate the distance to an
object, thereby allowing the drone to construct a map for
its surroundings. While camera and LiDAR performance
may be more subject to environmental conditions, they
provide a method to continuously update location over
time.

4) Signal strength (RSSI) to neighboring drones or ground
stations may provide estimates about distance [13].
Triangulation may be used to narrow down the set of
possible locations of the drone [14].

In this subsection, we describe PID designs for two im-
portant sensor types: Inertial Measurement Units (IMUs), and
Received Signal Strength Indication (RSSI).

1) IMU-based positional inference: A typical IMU is a 6
degree of freedom sensor that consists of a gyroscope and
an accelerometer. The gyroscope and accelerometer provide
the angular speed and translational acceleration on three axes,
both under the body frame [6] [10] [11] [15].

Rt+1 = Rt exp ((ωtdt)×) ,

vt+1 = vt + (Rtat − g) dt,

pt+1 = pt + vtdt+
1

2
(Rtat − g) dt2.

(1)

Given known initial location and attitude, Equation 1 trans-
forms the data from the IMU into the current pose and speed
information by observing rotation and acceleration across time.
We employ the direction cosine matrix Rt to represent the
attitude of the drone. Additionally, we use vt and pt to
represent the velocity and position of the drone at time t,
respectively. We then use exp ((ωndt)×), an exponential map
of a cross product matrix, to represent the corresponding
cosine rotation matrix for attitude changes from time t to t+1.

The Rtat transforms the acceleration from the body frame into
the reference frame where we then compensate for gravity g.

The gyroscope and accelerometer noise models are given as
follows:

ωm = ω + ωb + ωn,

am = a+ ab + an,

where ωm and am represent measured angular velocity and
acceleration, ωb and ab represent the bias, ωn and an
represents zero-mean Gaussian noise. The non-static bias ωb

and ab are driven by a random walk process, where ϵar , ϵωr
are Gaussian noises.

δωb = ωt
b − ωt−1

b = ϵωr

δab = atb − at−1
b = ϵar

2) RSSI-based multilateration positional inference: Re-
ceived Signal Strength Indicator (RSSI) reflects the strength of
a received signal and can be used to infer the distance between
a signal transmitter and a receiver. Unlike Global Positioning
System (GPS), which requires highly synchronized atomic
clock to measure the time of arrival of a radio signal, RSSI
measurement requires only basic radio receivers. The position
of the target can then be estimated through the technique of
multilateration (MLAT) once the RSSI measurements from
neighboring drones or stations are obtained.

An empirical RSSI channel model is the lognormal shad-
owing path loss model [13] [14].

RSSI = A− 10 · η · log10(d) + ϵRSSI (2)

where A is the received signal strength at reference distance,
η is the path loss exponent, d is the actual distance between
receiver and transmitter, and ϵRSSI is a zero-mean Gaussian
random variable following ϵRSSI ∼ N(0, σRSSI) that models
the noise in the measurement. In a typical free-space environ-
ment, path loss exponent η = 2 [13] [14].

Based on the RSSI measurement, we have an empirical
estimator of the distance. It is important to note that this is a
biased estimator because the Gaussian noise ϵRSSI is scaled
up by the power operator.

d̂ = 10
A−RSSI

10η (3)

Suppose we have a set of n RSSI measurements d̂i and
corresponding known locations of the transmitters pi =
(xi, yi, zi) for i = 1, . . . , n, and we aim to find the location of
the target drone p = (x, y, z). using multilateration with the
least squares method. We can formalize this problem as:

p̂ = argmin
p

n∑
i=1

(d̂i − ||p− pi||)2 (4)

where p̂ is the estimated target position, pi represents the
position of the ith neighboring drone, d̂i represents the RSSI-
based distance estimation for the ith neighboring drone. || · ||
denotes the Euclidean distance between two points. Equation 4
indicates that we aim to find the value of p that minimizes the



sum of squared differences between the measured distances
and the actual distances between the target location and the
neighboring drones locations. Equation 4 can be solved by
various non-linear least squares algorithms, specifically, we
use the Levenberg-Marquardt algorithm.

B. Fusion Module
The fusion module is composed of three sub-modules, the

Local Location Fusion (ES-EKF) sub-module, the Inter-Drone
Inference Sharing sub-module and the Intent-based Weighting
sub-module. For clarity, we describe the fusion process in the
above order with IMU and RSSI as example sensor inputs.

1) Error State Extended Kalman Filtering (ES-EKF):
Unlike RSSI multilateration which transforms the raw RSSI
measurement to an estimated position, we directly input the
raw RSSI measurement to the ES-EKF algorithm. This allows
us to properly model Gaussian noise σRSSI instead of dealing
with the non-linear positional error from RSSI multilateration,
which is introduced by Equation 4. We use an Error State
Extended Kalman Filter (ES-EKF) to fuse the sensor data
from RSSI and IMU. The key idea behind ES-EKF is to
estimate the bias term of sensors and the perturbation between
nominal and true states of the drone. The estimation of the
bias and perturbation would then be feedback to sensor and
system models for compensation. The IMU works as the
backbone of the ES-EKF sub-module with a high sampling
frequency while RSSI receiver provides with complementary
sensor input at a much lower sampling frequency. We define
the kinematic state and the error state of a drone as following:
x ≜ [p, v, q]T ∈ R10, δx ≜ [δp, δv, δθ, ab, ωb]

T ∈ R15, where
p ∈ R3 represents position, v ∈ R3 represents velocity, q ∈ R4

is a quaternion that represents the attitude. Correspondingly for
error state δx, we define perturbation for position and velocity
as δp = p−p̂, δv = v−v̂. Additionally, δθ ∈ R3 represents the
infinitesimal rotation change between nominal and true attitude
in Euler angle format, where q = δq ⊗ q̂ = e

δθ
2 ⊗ q̂ [10].

We also define um ≜ [am, ωm]T ∈ R6 as the sensor input
from IMU. The error state transition function for δx and the
kinematic state transition function for x are formulated as

δx← f(x, δx, um) = Fx(x, um) · δx+Gx(x) · w

x← F (x, um)

where kinematic transition function F is implicitly defined by
Equation 1. We then define w ≜ [an, ωn, δab, δωb]

T ∈ R12

to represent the measurement noise an, ωn and biased random
walk noise δab, δωb, the covariance matrix of w is denoted
by Q. We also define R ≜ R {q} ∈ SO(3) as the directional
cosine matrix associated with quaternion q, which indicates
the transformation from the IMU body frame to the reference
world frame.

We derive Fx and Gx following [10]:

Fx =


I3 I3∆t 0 0 0
0 I3 −[R(am − ab)]×∆t −R∆t 0
0 0 I3 0 −R∆t
0 0 0 I3 0
0 0 0 0 I3



Gx =


0 0 0 0

I3∆t 0 0 0
0 I3∆t 0 0
0 0 I3 0
0 0 0 I3


Suppose we have k neighboring drones; the measurement

equation is y = h(x) + v, where y ∈ Rk is the RSSI
measurement vector, h is the RSSI measurement function and
v ∈ Rk, is a vectorized extension of ϵRSSI , denoting Gaussian
noise vector with covariance V .

h(x) = A− 10 · η · log10(||p− pi||)

Note that the Jacobian matrix of H is with respect to the error
state δx because we are estimating the error state instead of
the kinematic state. The Jacobian matrix of H can be derived
by chain rule and calculated by Hx and Xδx.

H ≜
∂h

∂δx
=

∂h

∂x

∂x

∂δx
= Hx ·Xδx =


∂
∂xRSSI1
∂
∂xRSSI2

...
∂
∂xRSSIk

 ·Xδx (5)

∂

∂x
RSSIi = [

∂

∂px
RSSIi,

∂

∂py
RSSIi,

∂

∂pz
RSSIi, 0, . . . , 0]

T

where RSSIi represents the RSSI measurement from the
ith neighboring drone. ∂

∂xRSSIi represents the Jacobian of
RSSIi to kinematic state x, in which only related to position
p. The derivation of Xδx is trivial except for the quaternion
q = [qx, qy, qz, qw]

T [10].

Xδx =
∂x

∂δx
=

I6 0 0
0 Qδθ 0
0 0 I6

 Qδθ =
1

2


−qx −qy −qz
qw qz −qy
−qz qw qx
qy −qx qw


Algorithm 1 ES-EKF Algorithm
Input: xinitial, δxinitial, Pinitial, um, V , Q
Output: x̂, δ̂x, P

loop
û = CORRECTIONbias(um, δ̂x)
x̂← F (x̂, u)
P ← FxPFx

T +GxQGx
T

if RSSI measurement available then
H = Hx ·Xδx

K ← PHT (HPHT + V )−1

P ← (I −KH)P
δ̂x← K(y − h(x̂))
x̂ = CORRECTIONperturbation(x̂, δ̂x)

end
end loop

For multiple sensors, we introduce the usage of multi-staged
sensor fusion; each stage of sensor fusion only takes inputs
from two individual sensors and produce a positional output.



The output from the previous stage of fusion would then be
in turn taken as a pseudo-sensor input for the next stage of
sensor fusion, together with another actual sensor input. By
using a multi-staged sensor fusion framework, we effectively
leverage inputs from multiple sensors.

2) Inter-Drone Inference Sharing: To further improve ac-
curacy of our inferences, our system allows nearby drones to
contribute findings to the localization algorithm. We construct
a simple mesh network between neighboring drones, allowing
them to share their findings within a single hop (in our
evaluation section, we will also consider performance benefits
from sharing across multiple ALE hops).

In our approach, drones periodically exchange information
relevant to estimating their current location. In particular, each
drone sends its GPS location (which may or may not be
correct, e.g., if the drone is undergoing a spoofing attack), as
well as the individual outputs from each of its PIDs (location
estimation and confidence value) and relevant metadata (such
as time since attack, if known). Each drone receives this
information from its neighbors, then incorporates it into its
fusion process. The operator may wish to configure how much
a drone should trust or rely on its peers based on mission-
specific knowledge. To support this, our approach incorporates
a weight metric vector that is applied to external ALE PID
values before they are incorporated into the fusion process
on the local drone. Neighboring UAVs transmit their GPS
readings (which may or may not be spoofed) as well as sensor
inferences; attacked UAVs then perform localization leverag-
ing other UAVs’ findings by incorporating this information
into their fusion processes.

3) Intent-based Weighting Fusion: The warfighter may
want to input manual configurations for the system. For exam-
ple, the warfighter may be aware of the mission parameters,
sensor resilience and reliability that may influence the extent
we could trust different sensors. To support this, our design
incorporates configurable weights to provide control over the
fusion process. In particular, the warfighter modifies an inverse
scaling factor α ∈ (0,1] for each sensor’s noise covariance,
inducing the sensor fusion process to adapt its weights, and
consequently, the confidence levels associated with various
sensors’ inputs.

σweighted =
σraw

α
∈ [σraw,∞) (6)

IV. EVALUATION

To evaluate feasibility of our approach, and to investigate
its benefits and shortcomings, we undertook an experimental
evaluation. In this section, we first describe our emulation-
and simulation-based framework. We then describe several key
performance results of our design.

A. Experimental Setup

To investigate larger-scale scenarios, we created a scalable
and deterministic event-driven simulator along with a col-
lection of models for mobility and wireless. On simulation
startup, the drones are randomly deployed on a map with

random initial and target states including acceleration and
speed. The simulator supports realistic constraints on drones
mobility (acceleration, max speed). Each drone is equipped
with an IMU and a communication unit, providing sensor data
to the system at different frequencies. Additive Gaussian noise
is included as measurement noise. To evaluate the performance
under varying hardware platforms, we consider IMUs with
three levels of accuracy: low (AHRS380SA), mid (IMU381),
and high (ADA581016). We also consider pre-filtered readings
provided to the localization algorithm at a rate of 100 Hz.
To further improve realism, we implemented an emulation
framework, which allows the replay of real traces into our
design. Here, we leveraged traces collected from real GPS
and IMU sensor modules.

B. Metrics
We use root-mean-square error (RMSE) to evaluate the

accuracy of different localization algorithms.

RMSE =

√√√√ 1

n

n∑
i=1

||pi − p̂i||2 (7)

where pi and p̂i represent the ith actual and predicted position
at the same time, and n is the total number of observations.
The RMSE estimates the translational deviation between the
actual and predicted trajectory. Note that rotational deviation
is not evaluated in this context because RSSI multilateration
does not provide information about the orientation or rotational
aspects of the drones.

C. Single Sensor Efficiency
When the attacked drone needs to determine its own posi-

tion, one approach would be for it to leverage just a single
sensor at a time to perform its location inferences. To help us
study how much benefit comes from individual sensor types,
we configured our system to leverage one PID at a time.
Below, we present results for our approach leveraging just
RSSI, and just IMU data. We evaluate the accuracy of single-
sensor based localization algorithms.

1) RSSI: Figure 2a shows the error in location estimation
for varying radio ranges, using RSSI to correct the drone’s
position information.

We firstly demonstrate the accuracy of RSSI-based multilat-
eration. As the radio range increases, the attacked drone can
communicate with more nearby drones to obtain RSSI values
and their positions. This gradually reduces the error in RSSI-
based localization algorithms.

We proceed to examine how the swarm density affects
the accuracy of multilateration. To ensure consistency, we
predefine a set of 20 neighboring drones with known locations.
The range of available neighboring drones varies from a
minimum of 4, to a maximum of 20. During each iteration,
we randomly sample K drones, where 4 <= K <= 20,
from the original set of neighbors. We then execute equation
4 using these sampled drones to estimate the target location.
By repeating this process across multiple iterations, we assess
the accuracy of localization, the result is shown in Figure 2c.



Fig. 2. (a) Position error with RSSI (b) Position error with IMU (c) Effect of swarm density on RMSE.

Fig. 3. (a) Distribution of positional error (b) True vs. computed trajectory from trace data (c) Time-series variation in position error.

2) IMU: Next, we explored the ability of IMUs to correct
position information. Figure 2b measures RMSE versus time.
IMU-based correction provides highly accurate positioning for
a short period after attack. However, the mean error as well as
variance increases substantially over time. For low-cost IMUs
the mean error can reach up to 160 meters at the end of a
10-minute simulation period.

D. Effectiveness of Sensor Fusion

Using individual sensors can provide benefits, but each
sensor type may provide varying benefits under different
conditions. In this section we investigate whether we can
improve performance by fusing locational inferences across
sensor types, to overcome their individual limitation.

1) RSSI+IMU Weighted Average: To explore the best ways
to combine multiple sensors together, we undertake a study
where we average together the location information across
them with different weightings (each plane in Figure 4 cor-
respond to different weightings). Since RSSI and IMU are
orthogonal methods, this fusion approach can enhance the
accuracy of RSSI when the radio range is short and reduces the
instability of IMU over time. The time-based fusion algorithm
of RSSI and IMU improves results. Figure 5 compares the
use of the first-order reciprocal and the 2.5th-order reciprocal
of time, both of which effectively suppress the increasing
error in IMU measurements over a long time. However, their
differences are not significant in a 10-minute simulation.

2) Error-State Extended Kalman Filter Fusion: We then
investigate the performance of ES-EKF algorithm over a real-
world dataset, comprising GPS data collected at a sampling
frequency of 1Hz and 6 DoF IMU sensor data obtained at
sampling frequency of 100Hz, gathered on a vehicle in a urban
environment with the duration of 300 seconds. To simulate

Fig. 4. Parameterized exploration of RSSI+IMU.

Fig. 5. Parameterized exploration with reciprocal-based combining.

RSSI measurements, we consider four neighboring drones and
employ Equation 2 with σRSSI = 0.5. The positions and
altitudes of four neighboring drones are randomly sampled



from the predefined region to verify algorithm effectiveness.
We compare the positioning accuracy between RSSI multi-

lateration and ES-EKF based sensor fusion of RSSI and IMU.
The RMSE from Equation 7 is used as the metric for position-
ing error. Figure 3a shows that the RSSI multilateration has
a much higher positioning error, and a long-tailing effect, the
worst 10 percent deviations of which are beyond 174 meters.
The ES-EKF fusion of IMU and RSSI greatly alleviates the
long-tailing effect and increases the accuracy of positioning,
with the worst 10 percent of deviations are only beyond 26
meters. By leveraging sensor data from IMU and RSSI with
ES-EKF fusion, we see a nearly 80 percent improvement in
positioning accuracy over RSSI multilateration.

Figure 3b shows the disparity of positioning accuracy be-
tween RSSI multilateration and ES-EKF fusion between RSSI
and IMU. It highlights a significant deviation of the RSSI
multilateration results from the true trajectory, while the fusion
results closely align with the true trajectory. Numerous outliers
can be observed in the RSSI multilateration result.

Figure 3c demonstrates the time-based variation of different
algorithms’ positioning error, with ES-EKF of IMU and GPS
serving as the baseline. We observe similar patterns between
ES-EKF of IMU+RSSI and RSSI multilateration, some error
peaks occur at the same time periods but at a much lower
magnitude in the ES-EKF, implying that sensor fusion es-
sentially attenuate the error from RSSI. Moreover, ES-EKF
fusion greatly eliminates the variance in position uncertainty,
achieving a two magnitude reduction on the variance of
positioning error over RSSI multilateration.

The fundamental difference between RSSI multilateration
and ES-EKF with RSSI+IMU is that the ES-EKF does not
fuse the positional data produced by RSSI multilateration
under Equation 4, instead, RSSI measurements from the k
neighboring drones are directly used as a complementary
input to the system by Equation 5. Moreover, this difference
also imply that we can still perform ES-EKF algorithm when
neighboring drones number are fewer than 4, in which case the
RSSI multilateration would fail in a 3-dimensional scenario.

Using sensor fusion demonstrates a significant performance
improvement over relying solely on RSSI measurements. Note
that the empirical estimator in Equation 3 is a biased estimator
and hence the RSSI multilateration is in turn biased with a
non-linear positional error. Whereas the ES-EKF directly uses
the RSSI measurement with no further transformation, which
prevents introduction of non-linear error.

3) Inter-ALE Fusion: Finally, we investigate if performance
can be improved further by incorporating sensor readings from
neighboring drones. We find that performance depends greatly
on flight patterns. If drones fly in groups or are otherwise
similarly located, locations are likely to be similar, and their
inferences can provide a good estimate of the attacked drone’s
location. However, there are also circumstances where com-
munication can harm result. In this experiment, drones move
according to the random waypoint mobility model. Here, we
find that correcting based solely on IMU or RSSI outperforms
correcting based on neighbors’ inferences.

V. CONCLUSION

GPS signals are crucial to battlefield communication, and
hence an attractive target for adversaries to attack. In this
paper, we propose a novel framework for the disadvantaged
nodes with smaller platforms (e.g., drones) to enhance their
location information by leveraging data from their other sen-
sors as well as sensor data from neighboring drones to verify
and correct their location information. Principled techniques
such as Error State Extended Kalman Filtering is integrated
into our framework to improve accuracy of location estimates.
Overall, we find that our approach can substantially reduce the
adversary’s capability to disrupt a drone’s positional estimates.
For future work, it may be interesting to investigate whether
positional error and error variance could be improved by
leveraging machine learning techniques to adaptively change
weights for different sensor inputs. This work was supported
by The Boeing Company under the University Innovation
Program Agreement BRT-Z1121-5030.

REFERENCES

[1] T. Moore, “Global positioning system: Theory and practice,” The Journal
of Navigation, vol. 54, no. 3, p. 481–481, 2001.

[2] S. Swales, J. Maloney, and J. Stevenson, “Locating mobile phones and
the us wireless e-911 mandate,” 1999.

[3] I. Parra Alonso, D. F. Fernández Llorca, M. Gavilan, S. Álvarez Pardo,
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