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IP networks today require massive effort to configure and manage. Ethernet is vastly simpler to manage, but
does not scale beyond small local area networks. This article describes an alternative network architecture
called SEATTLE that achieves the best of both worlds: The scalability of IP combined with the simplicity
of Ethernet. SEATTLE provides plug-and-play functionality via flat addressing, while ensuring scalability
and efficiency through shortest-path routing and hash-based resolution of host information. In contrast to
previous work on identity-based routing, SEATTLE ensures path predictability, controllability, and stability,
thus simplifying key network-management operations, such as capacity planning, traffic engineering, and
troubleshooting. We performed a simulation study driven by real-world traffic traces and network topologies,
and used Emulab to evaluate a prototype of our design based on the Click and XORP open-source routing
platforms. Our experiments show that SEATTLE efficiently handles network failures and host mobility,
while reducing control overhead and state requirements by roughly two orders of magnitude compared with
Ethernet bridging.
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1. INTRODUCTION

Ethernet stands as one of the most widely used networking technologies today. Due
to its simplicity and ease of configuration, many enterprise, access-provider, and data-
center networks utilize Ethernet as an elementary building block. Each host in an
Ethernet is assigned a persistent and unique MAC address, and Ethernet bridges
automatically learn host addresses and locations. These “plug-and-play” semantics
simplify many critical aspects of network configuration. Meanwhile, flat addressing
simplifies the handling of both host-location and network-topology changes, obviating
the need for network administrators to reassign addresses.
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However, Ethernet is facing revolutionary challenges. Today’s layer-2 networks are
being built at an unprecedented size and with highly demanding requirements in
terms of efficiency, scalability, and availability. Large data centers are being built,
comprising hundreds of thousands of physical and virtual machines within a
single facility [Arregoces and Portolani 2003; Barroso and Holzle 2009], and main-
tained by hundreds of network operators. To increase machine utilization, facili-
tate maintenance, and reduce operational cost, these data centers employ various
agility-enhancing mechanisms such as live virtual-machine migration, fast machine
re-imaging (i.e., non-live machine migration), and dynamic adjustment of resource
shares (e.g., expanding or shrinking the size of a machine pool running a distributed
application). All these agility mechanisms place additional requirements on handling
very high rates of host and network churn—host arrival and departure, host address
and location changes, IP subnet and Ethernet Virtual LAN (VLAN) re-configuration,
etc. In particular, cloud-service data centers face especially challenging requirements,
as they must offer networking service for a large number of tenants (cloud-service
customers sharing the same data center) whose arrival and departure rates can be ex-
tremely high owing to the usage-based charging policy and the machine-independent,
transient nature of jobs. Meanwhile, large metro Ethernet deployments easily con-
tain over a million hosts and tens of thousands of bridges [Halabi 2003]. Ethernet is
also being increasingly deployed in highly dynamic environments, such as backhaul
for wireless campus networks, and as transport for developing regions [Hudson 2002].

Ethernet becomes all the more important in these environments because it allows
hosts to retain their IP addresses as long as they move within a single layer-2 domain
(i.e., IP subnet). This property is highly useful for ensuring service continuity across
host-location changes as well as simplifying both network and host configuration re-
lated to policy enforcement (e.g., access control). Despite these benefits, conventional
Ethernet has some critical limitations. First, Ethernet bridging relies on network-wide
flooding to locate end hosts. This results in large overhead to disseminate and store
host state that grows with the size of the network. Second, Ethernet forces paths to
comprise a spanning tree. Spanning trees perform well for small networks that often
do not have many redundant paths anyway, but introduce substantial inefficiencies on
larger networks that have more demanding requirements for low latency, high avail-
ability, and traffic engineering. Finally, critical bootstrapping protocols used frequently
by end hosts, such as Address Resolution Protocol (ARP) and Dynamic Host Configu-
ration Protocol (DHCP), rely on broadcasting. Not only does broadcasting waste useful
network and end-host resources, doing so additionally introduces security vulnerabili-
ties and privacy concerns.

Network administrators sidestep Ethernet’s inefficiencies today by interconnecting
small Ethernet LANSs using routers running the Internet Protocol (IP). IP routing en-
sures efficient and flexible use of networking resources via shortest-path routing. It
also has control overhead and forwarding-table sizes that are proportional to the num-
ber of subnets (i.e., prefixes), rather than the number of hosts. However, introducing
IP routing breaks many of the desirable properties of Ethernet. For example, network
administrators must now subdivide their address space to assign IP prefixes across
the topology, and update these configurations when the network-design changes. Sub-
netting leads to wasted address space, and laborious configuration tasks. Although
DHCP automates host address configuration, maintaining consistency between DHCP
servers and routers still remains challenging. Moreover, since IP addresses are
not persistent identifiers, ensuring service continuity across location changes (e.g.,
due to virtual machine migration or physical mobility) becomes more challenging.
Additionally, access-control policies must be specified based on the host’s current posi-
tion, and updated when the host moves.
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Alternatively, operators may use VLANSs, which allow administrators to build IP
subnets irrespective of hosts’ location. Hence, by provisioning each VLAN over a large
fraction of—if not an entire—network, administrators can lower the overhead of ad-
dress and access-control policy re-configuration due to host mobility. Unfortunately,
however, having large VLANSs counteracts the benefits of broadcast scoping, and wors-
ens data-plane efficiency, as a larger spanning tree is used in each VLAN to forward
traffic. In addition, properly determining the coverage of a VLAN (i.e., deciding which
bridges and links participate in a VLAN) requires precise knowledge about hosts’ com-
munication and mobility patterns and thus is extremely hard to automate. More-
over, since hosts in different VLANS still require IP to communicate with one another,
this architecture still inherits many of the challenges of IP mentioned above, such as
address-space fragmentation.

In this article, we address the following question: Is it possible to build a protocol
that maintains the same configuration-free properties as Ethernet bridging, yet scales
to large dynamic networks? To answer, we present a Scalable Ethernet Architecture
for Large Enterprises (SEATTLE). Specifically, SEATTLE offers the following features:

A One-Hop, Network-Layer DHT. SEATTLE forwards packets based on end-host
MAC addresses. However, SEATTLE does not require each switch to maintain state
for every host, nor does it require network-wide floods to disseminate host locations.
Instead, SEATTLE uses the global switch-level view provided by a link-state routing
protocol to form a one-hop DHT [Gupta et al. 2004], which stores the location of each
host. We also use this network-layer DHT to build a flexible directory service which en-
ables address resolution (e.g., storing the MAC address associated with an IP address)
as well as convenient service discovery (e.g., maintaining DHCP server addresses, the
least loaded DNS server’s address, or a printer within the domain). In addition, to
reduce lookup latency and enable fault isolation in a large network deployed over a
wide area, we present a hierarchical configuration of multiple regional DHTs.

Traffic-Driven Location Resolution and Caching. To forward packets along shortest
paths and to avoid excessive load on the directory service, switches can cache responses
to queries. Caching routing information is a well studied topic especially for Inter-
net routers which have to maintain a large amount of routing information [Jain and
Routhier 1986; Jain 1990; Feldmeier 1988; Heimlich 1990; Partridge 1996; Partridge
et al. 1998; Kim et al. 2009]. The route-caching design we propose is particularly ef-
fective for the target operational environment we envision—enterprises, metro-area,
and data-center networks. In these networks, many hosts typically communicate
only with a small number of other hosts (e.g., web, mail, or proxy servers) which are
commonly popular across the whole network [Aiello et al. 2005].! Hence, SEATTLE
switches can achieve a very high cache-hit ratio by maintaining the information about
the small working set of destination hosts. Our route-caching design also employs
a unique mechanism that addresses the key limitation of the earlier route-caching
work, namely slow-path forwarding upon cache misses. Unlike this earlier design, a

1Special-purpose cluster or data-center networks that are predominantly used to run data-parallel distrib-
uted computing [Dean and Ghemawat 2004; Isard et al. 2007] or high-performance computing applications
might be an exception to this. In such a network, a host can communicate with a large number of other hosts
in a short period of time. In fact, one of the primary goals of the job scheduler in such a system is avoiding a
skewed host-popularity distribution, making SEATTLE’s host-information caching less effective. Nonethe-
less, our SEATTLE design, even without host-information caching, can still ensure most of the core benefits
(e.g., smaller forwarding tables, fewer control-message exchanges, zero flood) over conventional Ethernet,
and we specifically demonstrate some of these benefits in Section 6. Furthermore, in data-center networks
where latency and workload increase due to a longer stretch is tolerable, random traffic indirection via the
network-layer DHT can offer unique benefits, such as traffic-oblivious load spreading [Kodialam et al. 2004].
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SEATTLE switch can simply forward a packet to another switch chosen by a simple
hash function even when the packet causes a cache miss, completing the entire packet-
forwarding process on the fast path. Furthermore, SEATTLE also provides a way to
piggyback location information on ARP replies, which eliminates the need for separate
location resolution when forwarding data packets following the ARP resolution. All
these mechanisms allow data packets to directly traverse the shortest path, making
the network’s forwarding behavior predictable and stable as well as simplifying traffic
engineering and network troubleshooting. This is one of the core benefits of SEATTLE
compared to conventional DHT-based networking systems.

A Scalable, Prompt Cache-Update Protocol. Unlike Ethernet which relies on time-
outs or broadcasts to keep forwarding tables up-to-date, SEATTLE proposes an explicit
and reactive cache update protocol that leverages only unicast. This ensures that all
packets are delivered based on up-to-date state, ensuring eventual consistency with
much lower control-plane overhead compared to Ethernet bridging and other DHT sys-
tems. Further, in contrast to conventional DHTS, this state-update process is directly
triggered by network-layer changes (specifically link-state advertisements). This en-
ables fast and accurate reaction to host- and network-state changes without requiring
any additional monitoring protocols. For example, by observing link-state advertise-
ments, switches can precisely determine when a switch is no longer reachable and ac-
cordingly evict all hosts’ entries that are no longer valid. Through similar approaches,
SEATTLE also seamlessly supports host-information (e.g., location, name, address)
changes.

Despite these features, our design remains compatible with existing applications
and protocols running at end hosts, as well as all Ethernet addressing modes (unicast,
multicast, and broadcast). For example, SEATTLE allows hosts to generate broad-
cast ARP or DHCP messages and internally converts them into unicast queries to a
directory service. SEATTLE switches can also handle general (i.e., non-ARP and non-
DHCP) broadcast traffic through loop-free multicasting. To offer broadcast scoping and
access control, SEATTLE also provides a more scalable and flexible mechanism that
allows administrators to create VLANs without requiring complicated VLAN-trunk
configuration.

The roadmap of this article is as follows. We first motivate our work in Section 2
by identifying the shortcomings of the conventional enterprise-network technologies.
Then we describe our main contributions in Sections 3 and 4 where we introduce a
very simple yet highly scalable directory service that enables shortest-path forwarding
while maintaining the same semantics as Ethernet. In Section 5, we further improve
the SEATTLE design by proposing a mechanism that ensures backwards-compatibility
with conventional Ethernet. We then evaluate our protocol using large-scale packet-
level simulations in Section 6. To test our solution for real networks, we also im-
plement a prototype switch using open-source routing platforms and summarize the
prototype switch design and architecture in Section 7. Then, we perform emulation
tests using the prototype and present evaluation results in Section 8. Our results
presented in Sections 6 and 8 show that SEATTLE scales to networks containing two
orders of magnitude more hosts than a traditional Ethernet network. As compared
with other flat-networking designs, SEATTLE reduces state requirements required
to achieve reasonably low stretch by a factor of ten, and improves path stability by
more than three orders of magnitude under typical workloads. SEATTLE also handles
network topology changes and host mobility without significantly increasing control
overhead. Finally, we compare in Section 9 our SEATTLE work with related network
designs, including advanced Ethernet architectures (e.g., RBridges [Perlman 2004],
IETF TRILL [TRILL 2010], SmartBridges [Rodeheffer et al. 2000]), flat networking
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architectures (e.g., ROFL [Caesar et al. 2006b], VRR [Caesar et al. 2006a], UIP [Ford
2004]), and data-center network architectures (e.g., VL2 [Greenberg et al. 2009], Port-
Land [Mysore et al. 2009]).

2. TODAY’S ENTERPRISE AND ACCESS NETWORKS

To provide background for the remainder of this article, and to motivate SEATTLE,
this section explains why Ethernet bridging does not scale. Then, we describe hybrid
IP/Ethernet networks and VLANSs, two widely used approaches which improve scala-
bility over conventional Ethernet, but introduce management complexity, eliminating
the “plug-and-play” advantages of Ethernet.

2.1 Ethernet Bridging

An Ethernet network is composed of segments, each comprising a single physical
layer.2 Ethernet bridges are used to interconnect multiple segments into a multi-hop
network, namely a LAN, forming a single broadcast domain [Varghese and Perlman
1990]. Each host is assigned a unique 48-bit MAC (Media Access Control) address. A
bridge learns how to reach hosts by inspecting the incoming frames, and associating
the source MAC address with the incoming port. A bridge stores this information in
a forwarding table that it uses to forward frames toward their destinations. If the
destination MAC address is not present in the forwarding table, the bridge sends the
frame on all outgoing ports, initiating a domain-wide flood. Bridges also flood frames
that are destined to a broadcast MAC address. Since Ethernet frames do not carry a
TTL (Time-To-Live) value, the existence of a loop in the topology can lead to broadcast
storms, where frames are repeatedly replicated and forwarded along the loop. To avoid
this, bridges in a broadcast domain coordinate to compute a spanning tree [Perlman
1985]. Administrators first select and configure a single root bridge, and then the
bridges collectively compute a spanning tree based on distances to the root. Unfor-
tunately, Ethernet-bridged networks cannot grow to a large size due to the following
reasons.

Globally Disseminating Every Host’s Location. Flooding and source-learning intro-
duce two problems in a large broadcast domain. First, the forwarding table at a bridge
can grow very large because flat addressing increases the table size in proportion
to the total number of hosts in the network. Second, the control overhead required
to disseminate each host’s information via flooding can be very large, wasting link
bandwidth and processing resources. Since hosts (or their network interfaces) power
up/down (manually, or dynamically to reduce power consumption), and change loca-
tion relatively frequently, flooding is an expensive way to keep per-host information
up-to-date. Moreover, malicious hosts can intentionally trigger repeated network-wide
floods through, for example, MAC address scanning attacks [Allman et al. 2007].

Inflexible Route Selection. Forcing all traffic to traverse a single spanning tree
makes forwarding more failure-prone and leads to suboptimal paths and uneven link
loads [Perlman 1999]. Load is especially high on links near the root bridge. Thus,
choosing the right root bridge is extremely important, imposing an additional admin-
istrative burden. Moreover, using a single tree for all communicating pairs, rather
than shortest paths, significantly reduces the aggregate throughput of a network be-
cause links not present in the tree cannot carry any traffic.

2Most enterprises and data centers today build switched Ethernet networks, rather than shared-medium
Ethernet networks. In a switched Ethernet network, a segment is a point-to-point link connecting an end
host and a bridge, or a pair of bridges. SEATTLE can work with both types of links because it leverages a
link-state routing protocol, which supports both switched and shared-medium links.
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Dependence on Broadcasting for Basic Operations. DHCP [Droms 1997] and
ARP [Plummer 1982] are used to assign IP addresses and manage mappings between
MAC and IP addresses, respectively. A host broadcasts a DHCP-discovery message
whenever it believes its network attachment point has changed. Broadcast ARP re-
quests are generated more frequently, whenever a host needs to know the MAC ad-
dress associated with the IP address of another host in the same broadcast domain.
Relying on broadcast for these operations degrades network performance. Moreover,
every broadcast message must be processed by every end host; since handling of broad-
cast frames is often application or OS-specific, these frames are not filtered by the
network interface card, and instead must interrupt the CPU. For portable devices on
low-bandwidth wireless links, receiving ARP packets can consume a significant frac-
tion of the available bandwidth, processing, and power resources. Moreover, the use
of broadcasting for ARP and DHCP opens vulnerabilities to malicious hosts that can
easily launch ARP or DHCP floods [Myers et al. 2004].

2.2 Hybrid IP/Ethernet Architecture

One way of dealing with Ethernet’s limited scalability is to build enterprise and access
provider networks out of multiple LANs interconnected by IP routing. In these hybrid
networks, each LAN contains at most a few hundred hosts that collectively form an
IP subnet. Communication across subnets is handled via certain fixed nodes called
default gateways. Each IP subnet is allocated an IP prefix, and each host in the subnet
is then assigned an IP address from the subnet’s prefix. Unlike a MAC address, which
functions as a host identifier, an IP address denotes the host’s current location in the
network.

The biggest problem of the hybrid architecture is its configuration overhead. Con-
figuring hybrid networks today represents an enormous challenge. Some estimates
put 70% of an enterprise network’s operating cost as maintenance and configuration,
as opposed to equipment costs or power usage [Kerravala 2002]. In addition, involv-
ing human administrators in the loop increases reaction time to faults and increases
potential for misconfiguration.

Configuration Overhead due to Hierarchical Addressing. An IP router cannot func-
tion correctly until administrators specify subnets on router interfaces, and direct rout-
ing protocols to advertise the subnets. Similarly, an end host cannot access the network
until it is configured with an IP address corresponding to the subnet where the host
is currently located. Assigning IP prefixes to subnets, and associating subnets with
router interfaces is typically a manual process, as the assignment must follow the ad-
dressing hierarchy, yet must reduce wasted addresses, and must consider future use
of addresses to minimize later reassignment. Despite automating end-host configu-
ration, DHCP introduces additional configuration overhead for managing the DHCP
servers. In particular, maintaining consistency between routers’ subnet configuration
and DHCP servers’ address allocation configuration, or coordination across distributed
DHCP servers are not simple. Finally, network administrators must continually revise
this configuration to handle network changes.

Complexity in Implementing Networking Policies. Administrators today use a col-
lection of access controls, QoS (Quality of Service) controls [King 2004], and other
policies to control the way packets flow through their networks. These policies are
typically defined based on IP prefixes. However, since prefixes are assigned based
on the topology, changes to the network design require these policies to be rewrit-
ten. More significantly, rewriting networking policies must happen immediately after
the network design changes to prevent reachability and performance problems from
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happening, as well as to avoid vulnerabilities. Ideally, administrators should only
need to update policy configurations when the policy itself, not the network, changes.

Limited Mobility Support. Supporting seamless host mobility is becoming increas-
ingly important in various networks. To improve power efficiency by adapting to work-
load and to minimize service disruption during maintenance operations, data-center
administrators often relocate virtual machines (either via machine re-imaging or live
migration). Large universities or enterprises often build campus-wide wireless net-
works, using a wired backhaul to support host mobility across access points. To en-
sure service continuity and minimize the policy-update overhead mentioned above,
it is highly desirable for a host to retain its IP address regardless of its location in
these networks. Unfortunately, hybrid networks constrain host mobility only within
a single, usually small, subnet. In a data center, this can interfere with the ability to
handle load spikes seamlessly; in wireless backhaul networks, this can cause service
disruptions. One way to deal with this is to increase the size of subnets by increasing
broadcast domains, introducing the scaling problems mentioned in Section 2.1.

2.3 Virtual LANs

VLANs address some of the problems of Ethernet and IP networks. VLANSs allow
administrators to group multiple hosts sharing common networking policies into a
single broadcast domain. Unlike a physical LAN, a VLAN can be defined logically,
regardless of individual hosts’ locations in a network. VLANS can also be overlapped
by allowing bridges (not hosts) to be configured with multiple VLANs. By dividing
a large bridged network into several appropriately-sized VLANSs, administrators can
reduce the broadcast overhead imposed on hosts in each VLAN and also ensure isola-
tion among different host groups. Compared with IP, VLANSs simplify mobility because
hosts can retain their IP addresses while moving between bridges in the same VLAN.
This also reduces policy reconfiguration overhead. Despite these benefits, however,
VLANSs have the following limitations:

Trunk Configuration QOuverhead. Extending a VLAN across multiple bridges re-
quires the VLAN to be trunked (provisioned) at each of the bridges participating in
the VLAN. Deciding which bridges should participate in a given VLAN must con-
sider traffic and host-mobility patterns to ensure efficiency and hence is often done
manually.

Limited Control-Plane Scalability. Although VLANSs reduce the broadcast overhead
imposed on a particular end host, bridges provisioned with multiple VLANs must
maintain forwarding-table entries and process broadcast traffic for every active host
in every VLAN configured on themselves. Unfortunately, to enhance resource utiliza-
tion and host mobility, and to reduce trunk configuration overhead, VLANSs are often
provisioned larger than necessary, worsening this problem. A large forwarding ta-
ble complicates bridge design, since forwarding tables in Ethernet bridges are typ-
ically implemented using Content-Addressable Memory (CAM) or off-chip SRAM
(Static Random Access Memory), an expensive and power-intensive technology.

Insufficient Data-Plane Efficiency. Forwarding traffic along a single spanning tree
in a VLAN prevents certain links from being used. Since larger enterprises and data
centers often have richer topologies for greater reliability and performance, this lim-
itation gets much more pronounced. Although configuring a disjoint spanning tree
for each VLAN [IEEE 802.1Q 2005; Sharma et al. 2004] may improve load balance
and increase aggregate throughput, effective use of per-VLAN trees requires periodi-
cally moving the roots and re-balancing the trees, which must be manually updated as
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traffic shifts. Moreover, inter-VLAN traffic must be routed via IP gateways, rather
than shortest physical paths.

3. NETWORK-LAYER ONE-HOP DHT

The goal of a networking system is to deliver packets or frames to a destination spec-
ified by an address. To do this, network devices collectively provide end hosts with a
service that maps destination addresses (or groups of addresses) to the physical loca-
tions of the hosts owning the addresses. Each network device implements this service
by maintaining next-hop pointers associated with host addresses in its forwarding ta-
ble and relies on a routing mechanism (e.g., link-state routing protocols in case of IP,
or domain-wide flooding and MAC learning in case of Ethernet) to keep these pointers
up to date.

In order to provide the same semantics to end hosts as those conventional network-
ing systems and yet scale to a large size, SEATTLE introduces a distributed directory
service that maintains mappings between hosts’ addresses, locations, and various other
types of information (e.g., names, identifiers). Specifically, the directory service is built
using a one-hop network-layer DHT.

We use a one-hop DHT to reduce lookup latency and complexity, as well as simplify
certain aspects of network administration such as traffic engineering and troubleshoot-
ing. We use a network-layer approach that stores mappings at switches, rather than at
separate management servers such as Ethane servers [Casado et al. 2009], for several
critical reasons. First, our network-layer approach ensures fast, efficient, and accu-
rate reaction to host and network events (e.g., host/switch failures and recoveries, host
location/address changes) because switches can easily learn about those events sim-
ply by monitoring link-state advertisements, by monitoring the liveness of host-facing
ports, or by snooping DHCP messages, without requiring any additional control-plane
protocol. Additionally, our network-layer approach can obviate large buffers at ingress
switches needed to store packets during host-information resolution, because ingress
switches can simply forward the packets to other switches that are known to keep
valid host information. While it is also conceivable to use the same approach with sep-
arate management servers, then those management servers have to be equipped with
enough data-plane capacity to cope with real data packets, rather than handle a small
volume of resolution messages. Meanwhile, our network-layer approach also allows
storage capacity to increase naturally with network size, helping the administrators
avoid critical operational concerns regarding when, where, and how many external
management servers they should deploy.

While we primarily focus in this article on using SEATTLE’s distributed directory
service as a mechanism to enable large-scale Ethernet networks, we also envision var-
ious additional uses of the distributed directory service to maintain other kinds of key-
value pairs in a highly scalable and eventually consistent fashion. To demonstrate this
generality, we show how we can use the distributed directory service to implement a
few different protocols’ semantics, such as Ethernet bridging (in Section 4.1), ARP (in
Section 4.2), DHCP (in Section 5.1), and even a general service discovery protocol that
can replace any application-specific broadcast (in Section 3.1.3).

3.1 A Highly Scalable, Multi-Purpose Key-Value Store Built with a One-Hop DHT

Our distributed directory has two main parts. First, switches run a link-state protocol.
This ensures that each switch can observe all other switches in the network, offering
a foundation for building an eventually-consistent distributed directory. Additionally,
this allows any switch to forward traffic to any other switch along shortest paths.
Second, switches use a common hash function to map host information to a switch.
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Each host-information entry is maintained in the form of (key, value). Examples of
these key-value pairs are (MAC address, location), and (IP address, MAC address).

3.1.1 Link-State Protocol Maintaining Switch State and Topology. SEATTLE enables
shortest-path forwarding by running a link-state protocol. However, distributing
end-host information in link-state advertisements, as advocated in previous propos-
als [Myers et al. 2004; Perlman 2004; Rodeheffer et al. 2000; TRILL 2010], would lead
to serious scaling problems in the large networks we consider. Instead, SEATTLE’s
link-state protocol maintains only the switch-level topology, which is much more com-
pact and stable. SEATTLE switches use this link-state information to compute short-
est paths for unicasting as well as multicast trees for multicasting and broadcasting.

To automate configuration of the link-state protocol, SEATTLE switches run a dis-
covery protocol to determine which of their links are attached to hosts and which are
connected to other switches. Distinguishing between these different kinds of links is
done by sending control messages that hosts ignore.> To identify themselves in the
link-state protocol, SEATTLE switches determine their own unique switch IDs with-
out administrator involvement and announce those IDs via link-state advertisements.
For example, each switch does this by choosing the MAC address of one of its interfaces
as its switch ID.

3.1.2 Hashing Key-Value Pairs onto Switches. Instead of disseminating per-host informa-
tion in link-state advertisements, SEATTLE switches maintain (i.e., publish, store,
and retrieve) this information in an on-demand fashion via a simple hashing mecha-
nism. This information is stored in the form of (key = %, value = v) pairs. A publisher
switch s, wishing to publish a (%, v) pair to the directory service uses a hash function
F, which maps % to a switch identifier (k) = r, and instructs switch r; to store the
mapping (k,v). We refer to r, as the resolver for k. A different switch s, may then
look up the value associated with £ by using the same hash function to identify which
switch is &’s resolver. This works because each switch knows all the other switches’
identifiers via link-state advertisements from the routing protocol, and hence F works
identically for all switches. Switch s, may then forward a lookup request to r; to re-
trieve the value v. Switch s, may optionally cache the result of its lookup, to reduce
redundant resolutions. All control messages, including lookup and publish messages,
are unicast with reliable delivery.

Reducing Control Overhead with Consistent Hashing. When the set of switches
changes due to a network failure or recovery, some keys have to be rehashed to dif-
ferent resolver switches. To minimize this rehashing overhead, SEATTLE utilizes
Consistent Hashing [Karger et al. 1997] for 7. This mechanism is illustrated in
Figure 1. A consistent hashing function maps keys to bins such that the change of
the bin set causes minimal churn in the mapping of keys to bins. In SEATTLE, each
switch corresponds to a bin, and a host’s information corresponds to a key. Formally,
given a set S = {sy, so, ..., s,} of switch identifiers, and a key &,

F(k) = argminyses{D(H(k), H(s;))}

where H is a regular hash function, and D(x, y) is a simple metric function computing
the counter-clockwise distance from x to y on the circular hash-space of H. This means
F maps a key to a switch in such a way that the hash of the switch’s id does not exceed
the hash of the key on the hash space of . As an optimization to improve resilience
to failures, a key may be additionally mapped to the next m closest switches along the

3This process is similar to how Ethernet bridges distinguish switches from hosts when building a spanning
tree.
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Fig. 1. Keys are consistently hashed onto resolver switches (s;).

hash ring. However, in our evaluation, we will assume this optimization is disabled by
default. The use of consistent hashing ensures that on average, a single switch failure
or recovery triggers |N|/|S| key rehashing events, where | N| is the number of keys (i.e.,
the number of end hosts in our usage) and |.S| is the number of switches in the network.
That is, in a network with 100,000 end hosts and 2,000 switches, a single switch failure
or recovery generates only 50 key-value re-publication messages on average.

Balancing Load with Virtual Switches. The scheme described so far assumes that
all switches are equally powerful, and hence low-end switches will need to cope with
the same directory-service workload as more powerful switches do. In practice, how-
ever, the capability of adjusting the workload is much needed for network-management
purposes. Hence, we propose an extension scheme based on running multiple virtual
switches on each physical switch. A single switch locally creates one or more virtual
switches. The switch may then increase or decrease its load by spawning/destroying
these virtual switches. Unlike techniques used in traditional DHTs for load balanc-
ing [Dabek et al. 2001], it is not necessary for each of our virtual switches to be individ-
ually advertised to other physical switches, substantially reducing the size of link-state
advertisements. Specifically, instead of advertising every virtual switch in link-state
advertisement, a SEATTLE switch only advertises the number of virtual switches it
is currently running. Upon receiving that number, other switches locally generate the
virtual switch IDs of the physical switch.* Note that it is possible to automate de-
termining a desirable number of virtual switches per physical switch [Godfrey et al.
2003].

3.1.3 Enabling Flexible Service Discovery. This design also enables more flexible service
discovery mechanisms without the need to perform network-wide broadcasts. This is
done by utilizing the hash function F to map a string defining the service to a switch.
For example, a printer may hash the string “PRINTER” and map the hash to a switch,
at which the printer may store its location or address information. Other switches
can then reach the printer using the hash of the pre-shared string. Services may also
encode additional attributes, such as load or network location, as simple extensions.
Multiple servers can redundantly register themselves with a common string to im-
plement anycasting, implementing anycast or multicast. Services can be named and
described using techniques shown in previous work [Adjie-Winoto et al. 1999].

4All switches use the same function R(s, i) that takes as input a switch identifier s and a number i, and out-
puts a new identifier unique to the inputs. A physical switch w only advertises in link-state advertisements
its own physical switch identifier s,, and the number L of virtual switches it is currently running. Every
switch can then determine the virtual identifiers of w by computing R(s,,,7) for 1 <i < L.

ACM Transactions on Computer Systems, Vol. 29, No. 1, Article 1, Publication date: February 2011.



TRC00349 ACM (Typeset by SPi, Manila, Philippines) 11 0of35 February 23,2011 14:31

SEATTLE: A Scalable Ethernet Architecture for Large Enterprises 1:11

3.2 Simple and Reliable Handling of Switch Failures and Recoveries

The switch-level topology can change if a new switch/link is added to the network, an
existing switch/link fails, or a previously failed switch/link recovers. These failures
may or may not partition the network into multiple disconnected components. Link
failures are typically more common than switch failures, and partitions are very rare
if the network has sufficient redundancy.

Handling Events that Do Not Modify the Set of Live Switches. In the case of a link
failure/recovery that does not partition a network, the set of switches appearing in the
link-state map does not change. Since the hash function F is defined with the set of
live switches in the network, a link failure/recovery does not modify F; given a key, its
resolver will not change. Hence, all that needs to be done is to update the link-state
map to ensure packets continue to traverse new shortest paths. In SEATTLE, this is
simply handled by the link-state protocol.

Handling Events that Modify the Set of Live Switches. However, if a switch fails or
recovers, the set of live switches in the link-state map changes. Hence there may be
some keys k£ whose old resolver rﬁld (i.e., k’s resolver before the switch failure or recov-
ery) differs from its new resolver ;°”. To deal with this, the tuple (£, v) must be moved

from r‘zld to r;°. This is handled by having the switch s, that originally published (%, v)
monitor the liveness of %£’s resolver through link-state advertisements—which can be
done with no additional control overhead because the publisher switch s, participates
in the link-state protocol. When s;, detects that 7} differs from rzld, it republishes (%, v)

to r;?”. The value (k, v) is eventually removed from rzld after a timeout, ensuring avail-
ability of (k,v) during convergence. Additionally, when a value » denotes a location
(e.g., a switch id s) and s goes down, each switch scans the list of locally-stored (%, v)
pairs and removes all entries whose value v equals s. Note this procedure correctly
handles network partitions because the link-state protocol ensures that each switch
will be able to see only switches present in its partition.

3.3 Reducing Lookup Latency and Enabling Fault Isolation via Multilevel DHT

The SEATTLE design presented so far leverages the link-state routing protocol to par-
tition a large number of frequently changing key-value pairs (specifically host infor-
mation) among a distributed set of switches and to ensure eventual consistency of
the key-value pairs. Running a single network-wide link-state routing protocol, how-
ever, might not be easily achievable in large networks that are susceptible to frequent
topological changes (switch/link failures and recoveries) because each such topolog-
ical change results in network-wide link-state advertisements. While flooding link-
state advertisements itself can consume increasingly more resources as a network size
grows, exchanging a large amount of host information to maintain the correctness of
the DHT system after a topological change can consume even more resources and cause
transient inconsistency in the directory system. Running a single routing protocol in-
stance over a large set of switches may also be inappropriate if network operators wish
to provide stronger fault isolation among geographic regions or to run heterogeneous
routing protocols for administrative purposes. Moreover, when a SEATTLE network
is deployed over a wide area, the resolver could lie physically far from both the source
and destination. Resolution through a long-distance communication increases latency
and lowers reliability.

To deal with these problems, SEATTLE may be configured hierarchically by leverag-
ing a multilevel, one-hop DHT illustrated in Figure 2. This hierarchical configuration
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Fig. 2. Hierarchical SEATTLE hashes keys onto regions.

of the DHT system, however, does not require end hosts to adopt hierarchical address-
ing; the multilevel DHT system still ensures flat addressing.

3.3.1 Dividing the Network into Small Regions. The core idea of our multilevel one-hop
DHT design is divide-and-conquer. Specifically, we divide a large SEATTLE network
into several smaller regions (regions P, @, and R in Figure 2) and a backbone region
(B in Figure 2) interconnecting the other regions. Each region is composed of a sub-
set of switches in the network that are located close to one another and the hosts
attached to those switches. A region is then connected to the backbone via its border
switch(es) (e.g., b¥ connecting region P to B) which advertises its special role to all
other switches in the region via the link-state protocol. The backbone is composed of
the border switches of all regions (b, 5€, and b%). The switch-level topology infor-
mation about a region is then summarized in a manner similar to the OSPF areas,
keeping most link-state advertisements only within a small region. This allows each
switch in a region to know about all the other switches in the same region only (in-
cluding the region’s border switch) and avoid learning unnecessary information about
switches in different regions.

Our multilevel one-hop DHT aims to ensure two key properties. First, all re-
gional host-information lookups are handled strictly within their own regions; only
inter-region lookups are forwarded across the backbone, substantially reducing over-
all lookup latency in a large network. Second, a network failure or recovery event in a
region is completely hidden from switches in other regions, hence eliminating unnec-
essary network-wide link-state flooding and avoiding host-information re-partitioning
in other regions.

3.3.2 Running a Separate, Self-Contained Hash Ring in Each Region. The specific mech-
anism SEATTLE employs to achieve these goals is separating regional hash rings
(DHT systems) from the backbone hash ring, and using the backbone ring only for
inter-regional lookups. A regional ring is populated with all switches in the region,
and the backbone ring is populated with the border switches from all regions. Suppose
a host £’s information v originates from a switch in region P. The (%, v) pair is first
published to the regional resolver r,f , which is %£’s resolver in region P dictated by the
regional ring. In addition to locally storing (%, v), ¥’ also forwards (, v) to one or more
border switches of the region (e.g., b¥). The role of this border switch 5% is simple;
on behalf of the original publisher of (k,v) in region P, b” acts as a proxy publisher
of (k, v) in the backbone. That is, b¥ stores (&, v) locally, hashes % onto the backbone
ring, and publishes (%, v) to another backbone switch b ,?. Note that b,? is the backbone
resolver for £ determined by the backbone ring, which 1s also a border switch of region

Q. Finally, b,? stores (k, v) for future inter-regional lookups.
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Any local lookup on % arising in region P is then resolved by rf. On the other hand,
when a nonlocal lookup is performed, for example, if a switch in region R wishes to
lookup %, the lookup is first forwarded to the local resolver for rf in region R. Since

rE does not maintain any value associated with £, it forwards the lookup to the border

switch b and triggers an inter-regional lookup. b ® then forwards the lookup to b,? as
dictated by the backbone ring.

3.3.3 Further Homogenizing Workloads on Switches. Note this mechanism imposes a
larger workload on backbone (i.e., border) switches than on nonbackbone switches be-
cause each backbone switch maintains all key-value pairs originating from its own
region, as well as some other key-value pairs published to itself for inter-regional
lookup. In essence, the backbone switches collectively maintain all hosts’ information
in the entire network, whereas switches in a nonbackbone region maintain only the
information about the hosts in that particular region. While it is fair to assume that
administrators, in practice, would use more powerful (with a larger forwarding table
and faster CPUs, for example) switches to build a backbone, it may also be desirable
to eliminate this constraint for some networks.

As an optimization to reduce load on backbone switches, b¥ may relay (k, v) rather

than store it itself. In addition, &’s backbone resolver b,? may also avoid storing (%, v)
itself by hashing % against its own regional ring for @ and storing (%, v) at a switch in

Q. Doing so, however, introduces some cost. For example, when b,? fails, the border

switch b% of region P cannot easily re-publish (&, v) to a new resolver in the backbone
because b’ does not keep (%, v) in its local forwarding table. In general, because switch
failures and recoveries (i.e., link-state updates) are not propagated across regions, it
becomes increasingly difficult to maintain the correctness of the directory service by
re-publishing hosts information in a timely fashion. As a solution, each original pub-
lisher switch periodically sends out publication messages to update the (%, v) pairs
in the resolvers that lie outside of its region. To improve availability even further, a
border switch can also replicate (&, v) at multiple backbone resolvers (as described in
Section 3.1.2) and issue multiple simultaneous lookups in parallel.

4. SCALING ETHERNET WITH THE NETWORK-LAYER ONE-HOP DHT

The previous section described the design of a distributed network-layer directory ser-
vice based on a one-hop DHT. In this section, we describe how we specifically use the
directory service to enable scalable address resolution and efficient packet delivery. We
first briefly describe how to forward data packets to MAC addresses in Section 4.1. We
then describe our remaining contributions: an optimization that eliminates the need to
explicitly look up host location in the DHT by piggy-backing that information on ARP
requests in Section 4.2, and a scalable, dynamic cache-update protocol in Section 4.3.

4.1 Host Location Resolution

Hosts use the directory service described in Section 3 to publish and maintain map-
pings between their MAC addresses and their current locations. These mappings are
used to forward data packets, using the procedure shown in Figure 3. When a host a
with MAC address mac, first arrives at its access switch s,, the switch must publish
a’s MAC-to-location mapping in the directory service. Switch s, does this by comput-
ing F(mac,) = ry, and instructing r, to store (mac,, s,). We refer to r, as the location
resolver for a. Then, if some host b connected to switch s, wants to send a data packet
to mac,, b forwards the data packet to s, which in turn computes F(mac,) = r,. Switch
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Fig. 3. Packet forwarding and lookup in SEATTLE.

sp then forwards the packet to r,. Since r, may be several hops away, s, encapsulates
the packet with an outer header with r,’s address as the destination. Switch r, then
looks up a’s location s,, and forwards the packet towards s, again using encapsulation.

Meanwhile, in order to limit the number of data packets traversing the resolver,
r, also informs s, of a’s current location s,, which switch s, then caches for later use.
While forwarding the first few packets of a flow via a resolver switch increases path
lengths and can potentially impact TCP performance because of the path change, we
show in Section 8 that this causes only negligible impact to the application perfor-
mance and explain why. More importantly, in the next section we also introduce an
optimization that allows data packets to traverse only shortest paths by piggy-backing
location information on ARP replies.

SEATTLE uses encapsulation to deliver packets between an ingress and a re-
solver switch, a resolver and an egress switch, or between an ingress and an egress
switch. This mechanism does introduce a small additional bandwidth overhead (e.g.,
14 bytes when using the EtherIP encapsulation [Housley and Hollenbeck 2002]) to
every packet. Administrators can easily reduce this overhead by employing jumbo
frames, which are widely available in today’s Ethernet bridges and IP routers.

Note SEATTLE manages per-host information via reactive resolution, as opposed
to the proactive dissemination scheme used in previous approaches [Myers et al. 2004;
Perlman 2004; Rodeheffer et al. 2000]. The scaling benefits of this reactive resolu-
tion increase in enterprise, data-center, and access-provider networks because most
hosts in such networks communicate with a small number of popular hosts, such
as mail/file/Web servers, traffic loadbalancers, printers, VoIP gateways, and Internet
gateways [Aiello et al. 2005]. To prevent forwarding tables from growing unnecessar-
ily large, the access switches can also apply various cache-management policies. For
correctness, however, the cache-management scheme must not evict the information of
those hosts that are directly connected to the switch or are registered with the switch
for resolution. Unlike Ethernet bridging, cache misses in SEATTLE do not lead to
flooding, making the network resistant to cache poisoning attacks (e.g., forwarding-
table overflow attack) or a sudden shift in traffic patterns. Moreover, those switches
that are not directly connected to end hosts (i.e., aggregation or core switches) do not
need to maintain any cached entries.

4.2 Host Address Resolution

In conventional Ethernet, a host sending an IP packet first broadcasts an ARP request
to look up the MAC address of the host owning the destination IP address contained
in the request. To enhance scalability, SEATTLE avoids this broadcast-based ARP
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operation. In addition, we extend ARP to return both the location and the MAC ad-
dress of the end host to the requesting switch. This allows data packets following an
ARP query to directly traverse shortest paths.

Broadcast-Free ARP. SEATTLE replaces the traditional broadcast-based ARP with
an extension to the one-hop DHT directory service. In particular, switches use F with
an IP address as the key. Specifically, when host a arrives at access switch s,, the
switch learns o’s IP address ip, (using techniques described in Section 5.1), and com-
putes F(ip,) = vq. The result of this computation is the identifier of another switch v,.
Finally, s, informs v, of (ip,, mac,). Switch v,, the address resolver for host a, then uses
the tuple to handle future ARP requests for ip, redirected by other remote switches.
Note that host a@’s location resolver (i.e., F(mac,)) may differ from o’s address resolver
(i.e., F(ipa)).

Optimizing Forwarding Paths via ARP. For hosts that issue an ARP request, SEAT-
TLE eliminates the need to perform forwarding via the location resolver as mentioned
in Section 4.1. This is done by having the address resolver switch v, also maintain the
location of a (i.e., s;) in addition to mac,. Upon receiving an ARP request from some
host b, the address resolver v, returns both mac, and s, back to b’s access switch s.
Switch s, then caches s, for future packet delivery, and returns mac, to host 5. Any
packets sent by b to a are then sent directly along the shortest path to a.

It is, however, possible that host & already has mac, in its ARP cache and immedi-
ately sends data frames destined to mac, without issuing an ARP request in advance.
Even in such a case, as long as s, also maintains a’s location associated with mac,,
sp can forward those frames correctly. To ensure access switches cache the same en-
tries as hosts, the timeout value that an access switch applies to the cached location
information should be larger than the ARP cache timeout used by end hosts.® Note
that, even if the contents of the switch cache gets different from that of the host cache
(due to switch reboot, etc.), SEATTLE continues to operate correctly because switches
can resolve a host’s location by hashing the host’s MAC address to the host’s location
resolver.

4.3 Handling Host Dynamics with Low Control-Plane Overhead

End hosts can undergo three kinds of changes in a SEATTLE network. First, a host
may change location, for example if it has physically moved to a new location (e.g.,
wireless hand-off), if its link has been plugged into a different access switch, or if it is
a virtual machine and has migrated onto a new physical machine that allows the VM
to retain its MAC address. Second, a host may change its MAC address, for example,
if its network-interface card (NIC) is replaced, if it is a VM and has migrated onto
a new physical machine that requires the VM to use the physical machine’s MAC
address, or if multiple hosts collectively acting as a single server or router (to ensure
high availability) experience a fail-over event [Hinden 2004]. Third, a host may change
its IP address, for example if a DHCP lease expires, or if the host’s address is manually
reconfigured. In practice, multiple of these changes may occur simultaneously. To
ensure correct packet delivery when these changes occur, we need to keep the directory
service up-to-date.

SEATTLE handles these changes by modifying the contents of the directory service
via insert, delete, and update operations. An insert operation adds a new (k, v) pair
to the DHT, a delete operation removes a (&, v) pair from the DHT, and the update
operation changes the value v associated with k. First, in the case of a location change,

5The default setting of the ARP cache timeout in most common operating systems ranges 5 to 20 minutes.

ACM Transactions on Computer Systems, Vol. 29, No. 1, Article 1, Publication date: February 2011.



TRC00349 ACM (Typeset by SPi, Manila, Philippines) 16 of 35 February 23, 2011 14:31

1:16 C. Kim et al.

the host 2 moves from one access switch s‘;fd to another s;°”. In this case, s}°” inserts
a new MAC-to-location entry. Since #’'s MAC address already exists in the DHT, this
action will update A’s old location with its new location. Second, in the case of a MAC
address change, h’s access switch s;, inserts an IP-to-MAC entry containing A’s new
MAC address, causing /’s old IP-to-MAC mapping to be updated. Since a MAC address
is also used as a key of a MAC-to-location mapping, s, deletes A’s old MAC-to-location
mapping and inserts a new mapping, respectively with the old and new MAC addresses
as keys. Third, in the case of an IP address change, we need to ensure that future ARP
requests for A’s old IP address are no longer resolved to A’s MAC address. To ensure
this, s, deletes A’s old IP-to-MAC mapping and insert the new one. Finally, if multiple
changes happen at once, the above steps occur simultaneously.

Ensuring Seamless Mobility. As an example, consider the case of a mobile host A
moving between two access switches, s‘;fd and s;°”. To handle this, we need to update
h’'s MAC-to-location mapping to point to its new location. As described in Section 4.1,
sp°" inserts (macy, s3°") into r;, upon arrival of 2. Note that the location resolver r;, se-

lected by F(macy) does not change when A’s location changes. Meanwhile, s‘;fd deletes

(macy, $9/Y) when it detects & is unreachable (either via timeout or active polling). Addi-

tionally, to enable prompt removal of stale information, the location resolver r; informs
2 that (macp, $3'9) is obsoleted by (macy, si).

However, host locations cached at other access switches (for shortest-path forward-
ing) must be kept up-to-date as hosts move. SEATTLE solves this problem by introduc-
ing a reactive cache-update protocol which takes advantage of the fact that, even after
updating the information at ry, s‘,’fd may receive packets destined to 2 because other
access switches in the network might have the stale information in their forwarding
tables. Hence, when s;’fd receives packets destined to A, it explicitly notifies ingress

switches that sent the mis-delivered packets of 2’s new location s*”. To minimize

service disruption, 3@ also forwards those misdelivered packets s}°".

Unfortunately, these efforts to keep a host’s location up-to-date can be wasted, if
the host changes its location too frequently. To avoid such a waste, a resolver switch
can selectively disable ingress notification for a highly mobile host — for example, by
monitoring the host’s mobility rate — and thus devolve to acting as a relay for packets
destined to the host. This mechanism essentially trades latency (i.e., path stretch)
for efficiency and consistency in replicating the mobile host’s information. Since a
mobile host is likely to experience poor communication quality (e.g., higher loss rate
or lower capacity at the physical layer) anyway, this trade-off would not over-penalize
the mobile host.

Updating Remote Hosts’ ARP Tables. In addition to updating contents of the direc-
tory service, some host changes require informing other hosts in the system about the
change. For example, if a host 4 changes its MAC address, other hosts who happened
to store A’s old MAC address mac;’lld in their local ARP caches must be able to update
the obsolete MAC address immediately. In conventional Ethernet, this is achieved by
broadcasting a gratuitous ARP request originated by A [Gratuitous ARP 2009]. A gra-
tuitous ARP is an ARP request containing the sending host’s MAC and IP addresses.
This request is not a query for a reply, but is instead a notification to update other
end hosts’ ARP tables and to detect IP address conflicts on the subnet. Relying on
broadcast to update other hosts clearly does not scale to large networks. SEATTLE
avoids this problem by unicasting gratuitous ARP packets only to hosts with invalid
mappings. This is done by having s; maintain a MAC revocation list.

Upon detecting &’'s MAC address change, switch s, inserts (ipy, mac;’lld, macj®"’) in
its revocation list. From then on, whenever s; receives a packet whose destination
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(IP, MAC) address pair equals (ipy, macj’fd), it sends a unicast gratuitous ARP request

containing (ips, mac;®”) to the source host which sent those packets. Note that, when
both #’s MAC address and location change at the same time, the revocation information
is created at A’s old access switch by A’s address resolver v, = F(ipy). To minimize
service disruption, s, also informs the source host’s ingress switch of (mac}”, s,) so
that the packets destined to mac;°” can then be directly delivered to s;, avoiding an
additional location lookup.

Note this approach of updating remote ARP caches does not require s; to look up
every packet’s IP and MAC address pair against the revocation list because s, can
skip the lookup in the common case—a switch’s revocation list is likely to remain
empty most time because, unlike location changes, hosts’ IP-to-MAC address map-
pings change rarely. In typical enterprise or data-center networks, such change hap-
pens only when a host gets a new network-interface card, or a pair of hosts sharing the
same IP address (typically an active/stand-by setup) swaps their active state [Hinden
2004]. Entries in the revocation list are removed after a timeout set equal to the ARP
cache timeout of end hosts.

5. ENSURING BACKWARDS-COMPATIBILITY WITH ETHERNET

To be fully backwards-compatible with conventional Ethernet, SEATTLE must act like
conventional Ethernet from the perspective of end hosts. This goal translates into a
few specific requirements. First, the way hosts interact with the network to bootstrap
themselves (e.g., to acquire their own or other hosts’ addresses, and to expose their
presence to switches) must be the same as Ethernet. Second, switches have to sup-
port general broadcast traffic which uses broadcast/multicast Ethernet addresses as
destinations. Third, to scope broadcast traffic and to control reachability among hosts,
administrators should be able to group end hosts into VLANs. In this section, we de-
scribe how SEATTLE satisfies these requirements without incurring the scalability
challenges of traditional Ethernet.

5.1 Bootstrapping Hosts

Host Discovery by Access Switches. When an end host arrives at a SEATTLE net-
work, its access switch needs to discover the host’s MAC and IP addresses. To discover
anew host’s MAC address, SEATTLE switches use the same MAC learning mechanism
as conventional Ethernet on all host-facing ports. On the other hand, to learn a new
host’s IP address or detect an existing host’s IP address change, SEATTLE switches
snoop on gratuitous ARP requests — most operating systems today generate a gratu-
itous ARP request when the host boots up, the host’s network interface or links comes
up, or an address assigned to the interface changes [Gratuitous ARP 2009]. Even if a
host does not generate a gratuitous ARP, the switch can still learn the host’s IP address
via snooping on DHCP messages. Similarly, when an end host fails or disconnects from
the network, the access switch is responsible for detecting that the host has left, and
deleting the host’s information from the network.

Host Configuration without Broadcasting. For scalability, SEATTLE resolves
DHCP messages without broadcasting. When an access switch receives a broadcast
DHCP discovery message from an end host, the switch delivers the message directly
to a DHCP server via unicast, instead of broadcasting it. SEATTLE implements this
mechanism using the existing DHCP relay agent standard [Droms 1997]. This stan-
dard is used when an end host needs to communicate with a DHCP server outside
the host’s broadcast domain. The standard proposes that a host’s IP gateway forward
a DHCP discovery to a DHCP server via IP routing. In SEATTLE, a host’s access
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switch can perform the same function with Ethernet encapsulation. Access switches
can discover a DHCP server using a similar approach to the service discovery mech-
anism introduced in Section 3.1.2. For example, the DHCP server hashes the string
“DHCP_SERVER” to a switch, and then stores its location at that switch. Other switches
then forward DHCP requests using the hash of the string.

5.2 Groups: Scalable and Flexible VLANs

SEATTLE avoids unnecessary broadcasting by eliminating flooding of unicast pack-
ets and supporting ARP and DHCP via unicast-based resolution. However, to of-
fer the same semantics as Ethernet bridging, SEATTLE still needs to support gen-
eral broadcasting—transmission of packets sent to a broadcast or multicast MAC ad-
dresses. In fact, some popular applications (e.g., IP multicast applications, peer-to-peer
file sharing programs) frequently use subnet-wide broadcasting for service-discovery
or contents-distribution purposes. In a network built with a large number of switches
and end hosts, however, performing network-wide broadcasts significantly overloads
both end hosts and switches, largely wasting data-plane resources. To cope with this
problem, SEATTLE needs to offer a broadcast scoping mechanism similar to VLANS.
VLANSs in Ethernet, however, are used not only for broadcast scoping, but also for con-
trolling reachability between hosts. Therefore, the SEATTLE mechanism that replaces
VLAN should also enable access control.

To offer the VLAN semantics to end hosts, SEATTLE introduces a notion of group.
Similar to a VLAN, a group is defined as a set of hosts forming a shared broadcast
domain irrespective of their locations. Hence, broadcast traffic from a host is deliv-
ered only to the hosts in the same group, enabling broadcast scoping. Unlike VLANS,
however, SEATTLE groups do not necessarily deny reachability between hosts in dif-
ferent groups because SEATTLE switches can resolve any host’s address and location
without relying on broadcasting. Thus, SEATTLE groups provide several additional
benefits over VLANSs. First, in contrast to VLANSs, groups do not need to be manually
trunked along the paths between switches.® Rather, a group is automatically extended
to cover any switch as soon as a member of that group arrives at the switch. Second,
a group is not forced to correspond to a single IP subnet and hence may span multi-
ple subnets or a portion of a subnet, if desired. Third, unicast reachability in layer-2
between two different groups may be flexibly determined depending on access-control
policies—a rule set defining which groups can communicate with which—between the
groups.

This flexibility of SEATTLE groups allows administrators to conveniently imple-
ment various useful network designs that were hard to achieve with VLANSs. To show
the benefits of this approach, we give three motivating examples. First, by aligning a
group with a subnet and by denying direct reachability between groups, one can sim-
ply implement exactly the same functionality as VLANs. However, groups can contain
a much larger number of end hosts than a VLAN and can be extended to anywhere in
the network without harming control-plane scalability and data-plane efficiency. Sec-
ond, by defining a group as a fraction of an IP subnet and by prohibiting inter-group
reachability, one can ensure the same semantics as private VLAN (PVLAN) [Hucaby
and McQuerry 2002], which is frequently used in hotel networks to avoid creating
numerous tiny IP subnets. Unlike PVLANSs, however, groups can be extended over

While administrators of a SEATTLE network still need to associate each host-facing port with its group,
several well-known principles and solutions exist for this problem and are readily available today. For
example, VLAN-management systems that can automate this task (e.g., mapping a MAC address, a physical
port, a cryptographic identity, or even a traffic flow to a VLAN) are already available and deployed in many
networks [Tengi et al. 2004]. SEATTLE can employ the same solutions.
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multiple bridges and scale to a large network. Finally, by permitting direct layer-2
reachability between groups, one can both scope broadcast traffic in each VLAN and
optimize traffic forwarding paths between hosts in different groups, avoiding latency
and vulnerability due to forwarding through IP gateways.

Group-Wide Broadcasting via Multicast Trees. VLAN trunking in conventional Eth-
ernet is essentially equivalent to the process of manually configuring routes for each
VLAN along which unicast and broadcast traffic is delivered. To avoid such an op-
erational burden, SEATTLE supports general broadcasting by having all broadcast
packets within a group be delivered through a multicast tree sourced at a dedicated
switch, namely a broadcast root, specific to the group. The mapping between a group
and its broadcast root is determined by hashing the group’s identifier to a switch via
F — the same consistent-hash function used for any other mapping tasks. Switches
construct a multicast tree in a manner similar to IP multicast (using link-state infor-
mation) and thus inherit the safety (i.e., loop freedom) and efficiency (i.e., delivering
broadcast traffic only when necessary) of IP multicast. The specific mechanism is as
follows. When a switch first detects an end host that is a member of group g, the switch
issues a join message that is carried up to the nearest graft point on the multicast tree
toward g’s broadcast root. When the host sends a broadcast packet, its access switch
marks the packet with g’s id and forwards it along g’s multicast tree. Finally, when the
host leaves g, its access switch may prune the branch.

Group-Based Access Control. In addition to handling broadcast traffic, groups in
SEATTLE also provide a highly scalable and flexible namespace upon which inter-host
reachability policies are defined. Note that groups only offer the namespace for access
control but do not limit reachability themselves. The specific mechanism is as follows.
When a host a arrives at its access switch s,, a’s group membership is determined by s,
and published to d’s resolver r, along with ¢’s other information. Access control policies
are then enforced by r, at a lookup time when another host b attempts to resolve a’s
information. In particular, r, replies to b’s lookup request only if the access-control
policy between the a’s group and b’s group permits reachability. When «’s information
is cached at another ingress switch, the ingress should also perform the same isolation
mechanism as the resolver.

6. EVALUATING MACRO-SCALE PERFORMANCE VIA SIMULATIONS

To evaluate SEATTLE, we take a two-pronged approach. First, we use simulations to
understand SEATTLE’s scalability, efficiency and reliability under a wide variety of op-
erating conditions. Using simulations enables us to examine SEATTLE’s performance
in large, dynamic networks in a reproducible environment. Second, to evaluate SEAT-
TLE’s micro-scale behavior and performance (e.g., packet processing latency, impact of
failures on traffic flows and applications), we conduct an implementation of SEATTLE,
along with a deployment on a testbed and evaluation with application traffic.

In this section, we start by taking the former approach, while deferring the latter to
Section 8. We start this section by describing our simulation environment. Then, we
evaluate SEATTLE’s performance under workloads collected from several real opera-
tional networks. Finally we investigate SEATTLE’s performance in dynamic environ-
ments by generating host mobility and topology changes.

6.1 Methodology for Large-Scale, Packet-Level Simulations

To evaluate the performance of SEATTLE, we would ideally like to have several
pieces of information, including complete layer-two topologies from a number of
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representative enterprises and access providers, traces of all traffic sent on every link
in their topologies, the set of hosts at each switch/router in the topology, and a trace of
host movement patterns. Unfortunately, administrators or large production networks
(understandably) were not able to share this detailed information with us due to pri-
vacy concerns, and also because they typically do not log events on such large scales.
Hence, we leveraged real traces where possible, and supplemented them with syn-
thetic traces. To generate the synthetic traces, we made realistic assumptions about
workload characteristics, and varied these characteristics to measure the sensitivity
of SEATTLE to our assumptions.

In our packet-level simulator, we replayed packet traces collected from the Lawrence
Berkeley National Lab campus network [Pang et al. 2005]. There are four sets of
traces, each collected over a period of 10 to 60 minutes, containing traffic to and from
roughly 9,000 end hosts distributed over 22 different subnets. The end hosts were run-
ning various operating systems and applications, including malware (some of which
engaged in scanning). To evaluate sensitivity of SEATTLE to network size, we arti-
ficially injected additional hosts into the trace. We did this by creating a set of vir-
tual hosts, which communicated with a set of random destinations, while preserving
the distribution of destination-level popularity of the original traces. We also tried
injecting MAC scanning attacks and artificially increasing the rate at which hosts
send [Allman et al. 2007].

We measured SEATTLE’s performance on four representative topologies. Campus
is the campus network of a large (roughly 40,000 students) university in the United
States, containing 517 routers and switches. AP-small (AS 3967) is a small access
provider network consisting of 87 routers, and AP-large (AS 1239) is a larger net-
work with 315 routers [Spring et al. 2004]. Because SEATTLE switches are intended
to replace both IP routers and Ethernet bridges, the routers in these topologies are
considered SEATTLE switches in our evaluation. To investigate a wider range of envi-
ronments, we also constructed a model topology called DC, which represents a typical
data center network composed of four full-meshed core routers each of which is con-
nected to a mesh of twenty one aggregation switches. This roughly characterizes a
commonly-used topology in data centers [Arregoces and Portolani 2003].

Our topology traces were anonymized, and hence lack information about how many
hosts are connected to each switch. To deal with this, we leveraged CAIDA Skitter
traces [Skitter 2010] to roughly characterize this number for networks reachable from
the Internet. However, since the CAIDA Skitter traces form a sample representa-
tive of the wide-area networks, it is not clear whether they apply to the smaller-scale
networks we model. Hence, for DC and Campus, we assume that hosts are evenly
distributed across leaf-level switches.

Given a fixed topology, the performance of SEATTLE and Ethernet bridging can
vary depending on traffic patterns. To quantify this variation we repeated each
simulation run 25 times, and plot the average of these runs with 99% confidence
intervals. For each run we vary a random seed, causing the number of hosts per
switch, and the mapping between hosts and switches to change. Additionally for
the cases of Ethernet bridging, we varied spanning trees by randomly selecting one
of the core switches as a root bridge. Our simulations assume that all switches are
part of the same broadcast domain. However, since our traffic traces are captured
in each of the 22 different subnets (i.e., broadcast domains), the traffic patterns
among the hosts preserve the broadcast domain boundaries. Thus, our simulation
network is equivalent to a VLAN-based network where a VLAN corresponds to an
IP subnet, and all non-leaf Ethernet bridges are trunked with all VLANs to enhance
mobility.
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Fig. 4. (a) Effect of cache timeout in AP-large with 50K hosts, (b) Table size increase in DC, and (c¢) Control
overhead in AP-large. Error bars in these figures show confidence intervals for corresponding data points.
A sufficient number of simulation runs reduced these intervals.

6.2 Control-Plane Scalability

Sensitivity to Cache Eviction Timeout. SEATTLE caches host information to route
packets via shortest paths and to eliminate redundant resolutions. If a switch removes
a host-information entry before a locally attached host does (from its ARP cache), the
switch will need to perform a location lookup to forward data packets sent by the
host. To eliminate the need to queue data packets at the ingress switch, those packets
are forwarded through a location resolver, leading to a longer path. To evaluate this
effect, we simulated a forwarding table management policy for switches that evicts
unused entries after a timeout. Figure 4(a) shows performance of this strategy across
different timeout values in the AP-large network. First, the fraction of packets that
require data-driven location lookups (i.e., lookups not piggy-backed on ARPs) is very
low and decreases quickly with larger timeout. Even for a very small timeout value of
60 seconds, over 99.98% of packets are forwarded without a separate lookup. We also
confirmed that the number of data packets forwarded via location resolvers drops to
zero when using timeout values larger than 600 seconds (i.e., roughly equal to the ARP
cache timeout at end hosts). Also control overhead to maintain the directory decreases
quickly, whereas the amount of state at each switch increases moderately with larger
timeout. Hence, in a network with properly configured hosts and reasonably small
(e.g., less than 2% of the total number of hosts in this topology) forwarding tables,
SEATTLE always offers shortest paths.

ACM Transactions on Computer Systems, Vol. 29, No. 1, Article 1, Publication date: February 2011.



TRC00349 ACM (Typeset by SPi, Manila, Philippines) 22 of 35 February 23, 2011 14:31

1:22 C. Kim et al.

Forwarding Table Size. Figure 4(b) shows the amount of state per switch in the DC
topology. To quantify the cost of ingress caching, we show SEATTLE’s table size with
and without caching (SEA_CA and SEA_NOCA, respectively). Ethernet requires more
state than SEATTLE without caching, because Ethernet stores active hosts’ informa-
tion entries at almost every bridge. In a network with s switches and A4 hosts, each
Ethernet bridge must be provisioned to store an entry for each destination, resulting
in O(sh) state requirements across the network. SEATTLE requires only O(h) state
since only the access and resolver switches need to store location information for each
host. In this particular topology, SEATTLE reduces forwarding-table size by roughly a
factor of 22. Although not shown here due to space constraints, we find that these gains
increase to a factor of 64 in AP-large because there are a larger number of switches in
that topology. While the use of caching significantly reduces the number of redundant
location resolutions, we can see that it increases SEATTLE’s forwarding-table size by
roughly a factor of 1.5. However, even with this penalty, SEATTLE reduces table size
compared with Ethernet by roughly a factor of 16. This value increases to a factor of 41
in AP-large. If desired, network administrators can vary the amount of space allocated
to cache host entries, so as to trade off stretch and space requirements.

Control Overhead. Figure 4(c) shows the amount of control overhead generated by
SEATTLE and Ethernet. We computed this value by dividing the total number of con-
trol messages — flooded packets in case of Ethernet, or host-information exchange mes-
sages in case of SEATTLE — over all links in the topology by the number of switches,
then dividing by the duration of the trace. SEATTLE significantly reduces control over-
head as compared to Ethernet. This happens because Ethernet generates network-
wide floods for a significant number of packets, while SEATTLE leverages unicast to
disseminate host location. Here we again observe that use of caching degrades perfor-
mance slightly. Specifically, the use of caching (SEA_CA) increases control overhead
roughly from 0.1 to 1 packet per second as compared to SEA_ NOCA in a network con-
taining 30K hosts. However, SEA_CA’s overhead still remains a factor of roughly 1000
less than in Ethernet, and this ratio corresponds roughly to the number of links in
the topology. In general, we found that the difference in control overhead increased
roughly with the number of links in the network.

Comparison with ID-Based Routing Approaches. We implemented the ROFL, UIP,
and VRR protocols in our simulator. To ensure a fair comparison, we used a link-state
protocol to construct vset-paths [Caesar et al. 2006a] along shortest paths in UIP and
VRR, and created a UIP/VRR node at a switch for each end host the switch is attached
to. Performance of UIP and VRR was quite similar to performance of ROFL with an un-
bounded cache size. Figure 5(a) shows the average relative latency penalty, or stretch,
of SEATTLE and ROFL in the AP-large topology. We measured stretch by dividing the
time the packet was in transit by the delay along the shortest path through the topol-
ogy. Overall, SEATTLE incurs smaller stretch than ROFL. With a cache size of 1000,
SEATTLE offers a stretch of roughly 1.07, as opposed to ROFL's 4.9. This happens be-
cause (i) when a cache miss occurs, SEATTLE resolves location via a single-hop rather
than a multi-hop lookup, and (ii)) SEATTLE’s caching is driven by traffic patterns, and
hosts in an enterprise network typically communicate with only a small number of
popular hosts. Note that SEATTLE’s stretch remains below 5 even when a cache size
is 0. Hence, even with worst-case traffic patterns (e.g., when every host communicates
with all other hosts, or when switches keep very small caches), SEATTLE still ensures
reasonably small stretch. Finally, we compare path stability with ROFL in Figure 5(b).
We vary the rate at which hosts leave and join the network, and measure path stability
as the number of times a flow changes its path (the sequence of switches it traverses)
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Fig. 5. (a) Stretch across different cache sizes in AP-large with 10K hosts, (b) Path stability, (¢c) Effect of
switch failures in DC, and (d) Effect of host mobility in Campus.

in the presence of host churn. We find that ROFL has over three orders of magnitude
more path changes than SEATTLE.

6.3 Sensitivity to Network Dynamics

Effect of Network Changes. Figure 5(c) shows performance during switch failures
and recoveries. Here, we cause switches to fail at rates drawn from a Pareto dis-
tribution (¢ = 2.0) with varying mean values (0.01 to 1 failure per minute). Switch
recovery times are also drawn from the Pareto distribution with a fixed mean of 30
seconds. Some of this experiment setup represents a very harsh operational condition;
having each switch fail once every minute on average with a mean-time-to-recovery
of 30 seconds causes one-third of all switches in the network to remain failed at any
given time.

Across all failure rates we found SEATTLE is able to deliver a larger fraction of
packets than Ethernet. This happens because SEATTLE is able to use all links in the
topology to forward packets, while Ethernet can only forward over a spanning tree.
Additionally, after a switch failure, Ethernet must recompute this tree, which causes
outages until the process completes. Although forwarding traffic through a location re-
solver in SEATTLE causes a flow’s fate to be shared with a larger number of switches,
we found that availability remained higher than that of Ethernet. Additionally, ingress
caching improved availability further because hosts’ location and address information
in an ingress cache remain valid as long as the hosts still reside in the network. Most
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notably, the number of control messages SEATTLE switches exchange to adapt to the
new topology is fewer by nearly three orders of magnitude than that of the flooded
messages Ethernet bridges exchange until they re-learn hosts’ location.

Effect of Host Mobility. To investigate the effect of physical or virtual host mobility
on SEATTLE performance, we randomly move hosts between access switches. We
drew mobility times from a Pareto distribution with a = 2.0 and varying means. For
high mobility rates, SEATTLE’s loss rate is lower than Ethernet (Figure 5(d)). This
happens because when a host moves in Ethernet, it takes some time for switches to
evict stale location information, and learn the host’s new location. Although some
host operating systems broadcast a gratuitous ARP when a host moves, this increases
broadcast overhead. In contrast, SEATTLE provides both low loss and low broadcast
overhead by updating host state via unicasts.

7. IMPLEMENTATION USING OPEN-SOURCE NETWORKING SOFTWARE

Our simulation results shown in Section 6 indicate that SEATTLE performs effi-
ciently on several network topologies. To verify SEATTLE’s performance and prac-
ticality through a real deployment, we also implemented a prototype SEATTLE
switch using two open-source routing software platforms: Click [Kohler et al. 2000]
and XORP [Handley et al. 2005]. Figure 6 shows the overall structure of our
implementation.

SEATTLE’s control plane is divided into two functional components: (i) the module
maintaining the switch-level topology, and (ii) the module maintaining and exchang-
ing end-host information, maintaining a consistent hash containing all live switches’
identifiers, and keeping forwarding information needed to choose specific next hops
for packets. We use XORP to realize the first functional module, and extend Click to
implement the second. Finally, we also extend Click to implement SEATTLE’s data-
plane—namely SEATTLE Forwarding Engine or SFE in Figure 6—which uses the host
and switch information available in the control-plane and performs per-packet oper-
ations, such as host-information lookup, encapsulation, decapsulation, and next-hop
forwarding. We explain the upper half of the SEATTLE control plane implemented in
XORP in Section 7.1 and the lower halfin Section 7.2. Then we describe the SEATTLE
data-plane details in Section 7.3. Our control- and data-plane modifications to Click
are specifically implemented as several Click elements shown in Figure 6. The entire
box named Click in Figure 6 can be either instantiated as a user process or a Linux
kernel-thread.

7.1 Maintaining the Switch-Level Topology with XORP

XORP is an extensible open-source software router [Handley et al. 2005], which con-
sists of several routing protocols and management functions. As previously mentioned,
SEATTLE relies on a link-state protocol to provide reachability between switches. We
used XORP’s OSPF protocol daemon to provide this function. In particular, each SEAT-
TLE switch runs a XORP OSPF process and build a complete switch-level network map
by exchanging link-state advertisements (LSAs) with other switches. Based on this
network map, the XORP Routing Information Base Daemon (RIBD) runs Dijkstra’s
shortest-path algorithm and construct a routing table for the switch. Whenever this
routing table is created or modified, RIBD installs the table into the data-plane mod-
ule, which we implement with either a user-level Click process or a kernel-level Click
thread. The data-plane module (i.e., the Click process instance in the user or kernel
space) uses this finalized version of routing table, namely NextHopTable, to determine
a next-hop switch for a destination switch. The Forwarding Engine Abstraction (FEA)
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Fig. 6. Abstract diagram of our SEATTLE switch implementation. Unshaded boxes represent existing
modules in XORP and Click that SEATTLE directly employs without any modification, whereas shaded
boxes represent components that are written from scratch for this prototype. Dotted lines between the
modules represent control-message exchanges, and the solid lines denote data-packet flows.

in the XORP module handles inter-process communication between XORP and Click.
All the processes and kernel threads constituting a SEATTLE switch are spawned and
managed by a single master process.

The current OSPF implementation in XORP assumes each network node (router
or switch) is identified only by an IP address, rather than a MAC address. Because of
this, our prototype switch does not automatically select its identifier from the MAC ad-
dresses assigned to its interfaces. Instead, each switch is assigned a unique IP address
on its loop-back interface, and advertises that address via a router LSA. For the same
reason, when switches forward data packets across multiple hops (i.e., from ingress
to egress or resolver), they use Ethernet-in-IP encapsulation [Housley and Hollenbeck
2002]. It is straightforward to extend our implementation to perform Ethernet-in-
Ethernet encapsulation and ensure simplicity and self-configuration. We note that
other link-state protocols such as IS-IS [Oran 1990] can work with non-IP interfaces,
but XORP does not currently support these protocols.

When our prototype switch first starts up, a script detects the state of each network-
interface card. It then executes a simple neighbor-discovery protocol to determine
which interfaces are connected to other switches. Once all the switch-facing interfaces
are correctly detected, the switch initiates an OSPF session and exchanges LSAs with
its neighbors. The default link weight associated with the OSPF adjacency is deter-
mined based on the link’s capacity (i.e., speed), and a different value may be used if
desired. Meanwhile, the switch begins to receive packets through host-facing inter-
faces and learns end-hosts’ information.

7.2 Building SEATTLE’s Control Plane in Click

As previously mentioned, SEATTLE employs several control messages to handle host
information, including host-information publication, notification for ingress caching,
and updates due to host churn. We implemented this functionality as an element,
named HostIlnfoExchanger, in the Click process because most SEATTLE control mes-
sages are directly triggered while handling data packets (e.g., MAC learning on the
host-facing interface) except for the host re-publication due to topology changes.
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In order to forward packets, the SEATTLE switch must know the location of desti-
nation hosts. To deal with this, we implemented the HostLocTable module. The Host-
LocTable is populated with three kinds of host information: (a) the physical interface
(port) of every locally-attached host; (b) the location (adjacent switch’s id) of every re-
mote host for which this switch is a resolver; and (c¢) the location of every remote host
cached for shortest-path forwarding. An insertion or deletion on this table takes place
when a new host arrives, an existing host leaves, a host is published to or withdrawn
from the switch, a host’s information is retrieved from a resolver for ingress caching, or
a cached host-information is evicted due to a cache-replacement decision. In addition,
for each insertion or deletion of a locally-attached host, the SFE also communicates
with the HostinfoExchanger and triggers a corresponding publication or withdrawal
message. To maintain IP-to-MAC mappings for ARP, a switch also maintains a sepa-
rate table in the control plane. While this table is similarly maintained to the Host-
LocTable, insertion and deletion operations on the table are triggered only by explicit
publication and withdrawal respectively.

Finally, we also modified Click to monitor changes on the link-state map main-
tained by XORP. This is needed because switch failures or recoveries may require
re-publication of host information. The Click process does this by monitoring the Nex-
tHopTable data structure, which stores every live switch in the network along with a
corresponding next hop for each switch. The NextHopTable is updated by the XORP
process whenever the network topology changes. Upon each change on the NextHopT-
able, the Click process also modifies its consistent hash ring, namely CHashRing, built
with all switch identifiers found in the NextHopTable. This hash ring allows the Click
data plane to perform consistent hashing and thus correctly map a host to its re-
solver. When the number of live switches in NextHopTable gets altered due to topology
changes, the SFE first modifies the hash ring by adding or deleting the switch on the
ring. If this change to the ring triggers re-publication of host information, the SFE
makes the HostinfoExchanger issue corresponding control messages (i.e., publications
or withdrawals), which are reliably exchanged via a simple acknowledgment-based
protocol.

7.3 Building SEATTLE’s Data Plane in Click

The way the SFE handles each packet is illustrated in Figure 7. Packet processing
utilizes all four control-plane modules we mentioned above: the NextHopTable to de-
termine a next hop, the CHashRing to map a host to a resolver, the HostLocTable to
determine host location information, and the HostinfoExchanger to exchange host in-
formation with other switches.

When a packet is received on a host-facing interface, the switch first learns an in-
coming packet’s source MAC address and looks up the corresponding entry in the Host-
LocTable. If there no corresponding entry is found, a new one is created and stored
along with the interface on which the packet was received. Note that only the switch
adjacent to the host performs this process because SEATTLE switches are not sup-
posed to learn sources from frames received through switch-to-switch interfaces.

Then, the switch looks up the destination MAC address in the HostLocTable. If
the lookup fails, the switch executes the consistent hash function F with the desti-
nation MAC address. It subsequently obtains a corresponding resolver switch’s id,
encapsulates the packet with that identifier, determines the next hop by looking up
the NextHopTable with the resolver’s id, and sends out the packet to the chosen next
hop. On the other hand, if the lookup succeeds, the next action is determined based
on three possible cases: the switch knows the destination host because (i) the des-
tination is directly connected to the switch, (ii) the destination was published to the
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Fig. 7. Packet processing flowchart. sre and dst respectively denote the source and destination MAC ad-
dresses in the original packet header, and dstoyut¢ denotes the destination address in the outer encapsulation
header. SPF stands for shortest-path forwarding.

switch because the switch is the destination’s resolver, or (iii) the destination’s location
was cached at the switch by earlier packets to the same destination. In case (i), the
switch simply directs the packet to a corresponding output port. In cases (ii) or (iii), the
switch encapsulates the packet with the identifier of the destination’s adjacent switch
(per the HostLocTable), determines the next hop (per the NextHopTable), and forwards
the encapsulated packet to the next hop. Additionally for (ii), the switch must send a
host-location notification message to the ingress for shortest-path forwarding.

Note that this host location resolution procedure takes place only at ingress,
resolver, and egress switches. All the other intermediate switches simply for-
ward packets based on the destination switch’s id contained in the outer header.
SEATTLE switches distinguish encapsulated packets from regular packets via the
Protocol ID field in the IP header. In an implementation using Ethernet-in-Ethernet
encapsulation, the EtherType field in the outer Ethernet header can provide the same
functionality.

In addition, if the incoming packet is an ARP request, the ingress switch executes
the hash function F to look up the corresponding resolver’s id, and re-writes the desti-
nation to that id, and delivers the packet to the resolver for unicast ARP resolution.

8. EXPERIMENTAL RESULTS FROM EMULATION TESTS

In this section, we report performance results from a deployment of our prototype
implementation on Emulab [White et al. 2002]. First, for cross-validation purposes,
we compare the performance of our prototype switches with the simulation results
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Table I. Cross Validation Results

Stretch Table Size Control Overhead
(# entries) (# control messages)
Emulation | Simulation | Emulation | Simulation | Emulation | Simulation
SEATTLE 1.03 1.00 3,896 3,979 17.2K 17.4K
SEATTLE 1.36 1.37 3,477 3,500 8.1K 8.3K
(w/o ingress
caching)
Ethernet 1.25 1.30 5,974 6,155 549.8K 561.6K
Table II. Per-Packet Processing Time in Micro-Sec
learn look up encapsulation | look up | decapsulation || Total
source | host table nexthop
table
SEATTLE-ingress 0.61 0.63 0.67 0.62 - 2.53
SEATTLE-egress - 0.63 - - 0.03 0.66
SEATTLE-intermediate - - - 0.67 - 0.67
Ethernet 0.63 0.64 - - - 1.27

These numbers are measured using the Click-based SEATTLE implementation (explained in Section 7)
and EtherSwitch, a publicly-available Ethernet bridge implementation included in the public Click dis-
tribution. We ran the Click process in the user space of a FreeBSD PC equipped with a 3.0 GHz proces-
sor and 2 GB of memory. The absolute numbers in this table are not particularly meaningful as they
may change on different platforms. The difference between SEATTLE and Ethernet numbers, however,
clearly distinguishes between the two technologies.

(shown in Section 6). Next, we present a set of microbenchmarks to evaluate per-
packet processing overheads. Then, to evaluate dynamics of a SEATTLE network, we
measure control overhead and switch state requirements over time. Finally, we inves-
tigate impact of SEATTLE on application-level performance, through a combination of
web benchmarks.

For all experiments summarized in this section, we actually replayed the same traf-
fic traces we used for the simulation tests in Section 6 using a set of hosts acting as
traffic generators. Unless otherwise mentioned, the results shown in this section are
from tests using the user-space SEATTLE implementation (i.e., a Click process run-
ning as a user process).

Cross-Validation. To ensure simulation results collected in the previous section
would roughly characterize performance of a real SEATTLE deployment, we conducted
experiments to cross-validate the simulator and implementation. We did this by con-
figuring the simulator and implementation with identical traffic traces, topology, and
protocol parameters. We then measured stretch, control overhead, and forwarding-
table size for both Ethernet and SEATTLE in Table I. We found that average stretch,
control overhead, and table size from implementation results were within 3% of the
values given by the simulator. In general, we found these metrics exhibit similar
trends under all the topologies and workloads we tried.

Packet Processing QOuverhead. Table II shows per-packet processing time for both
SEATTLE and Ethernet. We measure this as the time from when a packet en-
ters the switch’s inbound queue, to the time it is ready to be moved to an out-
bound queue. We break this time down into the major components. From the table,
we can see that SEATTLE switches exercise different sets of functional components
based on their roles (ingress, egress, or intermediate) during packet delivery, whereas
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Fig. 8. Time-series charts showing how SEATTLE and Ethernet react to network dynamics.

Ethernet bridges perform the same way all the time. In particular, an ingress switch
in SEATTLE introduces more processing time than in Ethernet. This happens be-
cause the ingress switch has to encapsulate a packet and then look up the next-hop
table with the outer header. However, SEATTLE introduces less packet processing
overhead than Ethernet at noningress hops, as intermediate and egress switches do
not need to learn source MAC addresses, and consistent hashing (which takes around
2.2 us on our test platform) is required only for ARP requests. Hence, SEATTLE in-
troduces less overall processing time on paths longer than 3.03 switch-level hops. In
comparison, we found the average number of switch-level hops between hosts in a real
university campus network (Campus) to be over 4 for the vast majority of host pairs.
Using our kernel-level implementation of SEATTLE, we were able to fully saturate a
1-Gbps link [Pall 2008].

Effect of Network Dynamics. To evaluate the dynamics of SEATTLE and Ethernet,
we instrumented the switch’s internal data structures to periodically measure perfor-
mance information. Figures 8(a) and 8(b) show forwarding-table size and control over-
head, respectively, measured over one-second intervals. We can see that SEATTLE
has much lower control overhead when the systems first start up. However, SEAT-
TLE’s performance advantages do not come from cold-start effects, as it retains lower
control overhead even after the system converges. As a side note, the forwarding-table
size in Ethernet is not drastically larger than that of SEATTLE in this experiment
because we are running on a small four-node topology. However, since the topology
has ten links (including links to hosts), Ethernet’s control overhead remains substan-
tially higher. Additionally, we also investigate performance by injecting host scanning
attacks [Allman et al. 2007] into the real traces we used for evaluation. Figure 8(b)
includes the scanning incidences occurred at around 300 and 600 seconds, each of
which involves a single host scanning 5000 random destinations that do not exist in
the network. In Ethernet, every scanning packet sent to a destination generates a
network-wide flood because the destination does not exist, resulting in sudden peaks
on the control-overhead curve of Ethernet. In SEATTLE, each scanning packet gener-
ates one unicast lookup (i.e., the scanning data packet itself) to a resolver, which then
discards the packet.

Fail-Over Performance. Figure 9 shows the effect of switch failure. To evaluate
SEATTLE’s ability to quickly republish host information, here we intentionally dis-
able caching, induce failures of the resolver switch, and measure a TCP connection’s
behavior when all packets in the connection are forwarded through the resolver. We
set the OSPF hello interval to 1 second, and dead interval to 3 seconds. After the
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Fig. 9. Failover performance.

resolver fails, there is some convergence delay before packets are sent via the new re-
solver. We found that SEATTLE restores connectivity quickly, typically on the order
of several hundred milliseconds after the dead interval. This allows TCP to recover
within several seconds, as shown in Figure 9(a). We found performance during fail-
ures could be improved by having the access switch register hosts with the next switch
along the ring in advance, avoiding an additional re-registration delay. When a switch
is repaired, there is also a transient outage while routes move back over to the new
resolver. Figure 9(b) shows TCP can recover in several seconds from switch repairs
as well. Additionally, as shown in Figure 9(c), we were able to improve convergence
delay during recoveries by letting switches continue to forward packets through the
old resolver for a grace period. In contrast, optimizing Ethernet to attain low (a few
seconds) convergence delay (by aggressively turning on or off switch ports to rapidly
rebuild a spanning tree) exposes the network to a high chance of broadcast storms,
making it nearly impossible to realize in a large network.

Impact on Application-Level Performance. We evaluated how SEATTLE’s host-
information resolution mechanism affects the application performance by running a
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Table Ill. Web Performance Benchmarks: (Download time
per file in sec.)

SEATTLE Ethernet

hi [ h2 | h3 [ h1 | h2 | h3

5KB 0.07 | 0.10 | 0.06 | 0.15 | 0.09 | 0.10

50KB 0.15 | 0.22 | 0.11 | 0.35 | 0.21 | 0.23

500KB || 0.57 | 0.82 | 0.42 | 1.36 | 0.81 | 0.88

web benchmark. Here, we configured a topology consisting of four switches connected
in a full mesh via links with 10 to 20 msec of delays. We placed four hosts A0, hl,
h2, and h3, one at each of the four switches. To quantify the effect of the subopti-
mal forwarding for the first few packets, we emptied each switch’s host-information
cache without emptying the ARP cache of the four hosts and then ran the Flexiclient
web benchmark tool [Pai et al. 1999] to generate a collection of test files and request
patterns. Finally we measured the amount of time required for hosts 21, A2, and h3
to download these files from A0 using both SEATTLE and Ethernet. Table III shows
the results with three different file sizes ranging from 5KB to 500KB over 50 trials.
At first, one might think that SEATTLE — even with shortest-path forwarding — may
increase download latency, as the first few packets may traverse a different path from
later packets, possibly resulting in reordering. However, as can be seen from the table,
this effect is negligible and has little effect on download time. This is because deliver-
ing first few packets in a connection has little impact on TCP’s congestion-control and
round-trip-time estimation logic. Note that the performance of Ethernet in the case
of 1 and A3 is worse than that of SEATTLE because traffic between A0 and A1/h3 is
forwarded through the root bridge A2.

9. RELATED WORK

The primary goal of our work is to design and implement a practical replacement
for Ethernet that scales to large and dynamic networks. Although there are many
approaches to improve Ethernet bridging, none of them are suitable for our purposes.
RBridges [Perlman 2004; TRILL 2010] leverage a link-state protocol to disseminate
bridge connectivity and employ a broadcast-based host-information dissemination
scheme combined with source learning. Doing this eliminates the need to maintain a
spanning tree and improves forwarding paths. CMU-Ethernet [Myers et al. 2004] also
leverages link-state routing and replaces end-host broadcasting by propagating host
information in link-state updates. Viking [Sharma et al. 2004] uses multiple spanning
trees for faster fault recovery, which can be dynamically adjusted to conform to
changing load. SmartBridges [Rodeheffer et al. 2000] allows shortest-path forwarding
by obtaining the network topology, and monitoring which end host is attached to each
switch. However, its control-plane overheads and storage requirements are similar
to Ethernet, as every end host’s information is disseminated to every switch. While
SEATTLE was inspired by the problems addressed in these works, SEATTLE takes
a radically different approach that eliminates network-wide dissemination of per-host
information. This results in substantially improved control-plane scalability and
data-plane efficiency. While there has been work, conducted in parallel with ours, that
proposes hashing to support flat addressing [Ray et al. 2007], their design does not
promptly handle host dynamics and forwards packets along a spanning tree, rather
than through the shortest path. In contrast to this prior work, SEATTLE additionally
enables some of the critical features especially useful for large networks, such as fault
isolation, small lookup latency, and support for multiple small routing domains that
can be managed independently.
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Key differences of this article from our earlier work [Kim et al. 2008] include a
detailed explanation of a prototype SEATTLE switch (Section 7), additional evaluation
results using the prototype (Section 8), and a clearer description on the multilevel one-
hop DHT design (Section 3.3) and a reachability isolation mechanism that improves
the VLAN semantics (Section 5.2).

The design we propose is also substantially different from recent work on identity-
based routing (ROFL [Caesar et al. 2006b], UIP [Ford 2004], and VRR [Caesar et al.
2006a]); our solution is suitable for building a practical and easy-to-manage network
for several reasons. First, these previous approaches determine paths based on a
hash of the destination’s identifier (or the identifier itself), incurring a large stretch
penalty which is unbounded in the worst case. In contrast, SEATTLE does not perform
identity-based routing. Instead, SEATTLE uses resolution to map a MAC address to
a host’s location, and then uses the location to deliver packets along the shortest path
to the host. This reduces latency and makes it easier to control and predict network
behavior. Predictability and controllability are extremely important in real networks,
because they make essential management tasks (e.g., capacity planning, troubleshoot-
ing, traffic engineering) possible. Second, the path between two hosts in a SEATTLE
network does not change as other hosts join and leave the network. This substan-
tially reduces packet reordering and improves constancy of path performance. Further,
SEATTLE employs traffic-driven caching of host information, as opposed to the traffic-
agnostic caching used in previous work (e.g., finger caches in ROFL). By only caching
information that is actually needed to forward packets, SEATTLE significantly re-
duces the amount of state required to deliver packets. Finally, our design consists of
several generic components, such as the multilevel one-hop DHT and service discovery
mechanism, which could be adapted to the work in ROFL, UIP, and VRR.

SEATTLE also relates to other recent work on scalable network architectures for
large data centers, including VL2 [Greenberg et al. 2009], PortLand [Mysore et al.
2009], and MOOSE [Scott and Crowcroft 2008]. While these designs propose separat-
ing hosts’ flat names from their hierarchical locations to achieve scalability, agility,
and ease of configuration, their technical approaches differ from SEATTLE. VL2
introduces a logically centralized, server-based (rather than network-based) direc-
tory system to maintain host information, along with host-information resolution and
traffic-engineering mechanisms triggered and controlled by end hosts, rather than
ingress switches. PortLand also employs a centralized directory system to maintain
host information, but the host information itself is determined and assigned by dis-
tributed switches that discover their own topological positions by taking advantage
of the multirooted tree topology prevalent in data centers. Centralizing network con-
trol may be possible for cloud-service data centers because a cloud-service provider
often controls every host’s lifetime and information via a logically centralized virtual-
machine manager. Taking advantage of end-host capabilities to enhance a network
is also a reasonable approach for cloud-service data centers where end-host environ-
ment is highly homogeneous due to virtualization. Unlike VL2 and PortLand, how-
ever, SEATTLE introduces an entirely decentralized highly-scalable solution, useful
not only for cloud-service data centers or tree-based networks, but for any general
large flat-addressing networks interconnecting autonomous and heterogeneous end
hosts. We also compared SEATTLE’s decentralized approach with other centralized
approaches in Section 3.

10. CONCLUSION

Operators today face significant challenges in managing and configuring large net-
works. Many of these problems arise from the complexity of administering IP net-
works. Traditional Ethernet is not a viable alternative (except perhaps in small LANSs)
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due to poor scaling and inefficient path selection. We believe that SEATTLE takes
an important first step towards solving these problems, by providing scalable self-
configuring routing. Our design provides effective protocols that discover neighbors,
resolve hosts’ information, handle switch and host dynamics, deliver packets through
shortest paths, and yet do not require any configuration for addressing and subnetting.
Hence, in the simplest case, network administrators can construct an operational net-
work without modifying any protocol settings. However, SEATTLE also provides add-
ons for administrators who wish to customize network operation. Experiments with
our initial prototype implementation show that SEATTLE provides efficient routing
with low latency, quickly recovers after failures, and handles host mobility and net-
work topology changes with low control overhead.

Moving forward, we are interested in improving the SEATTLE design for security.
We are also interested in ramifications on switch architectures, and how to design
switch hardware to efficiently support SEATTLE. Finally, to ensure deployability, this
paper assumes networking stacks at end hosts are not modified. It would be interest-
ing to consider what performance optimizations are possible if end host software can
be changed.
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